通过亲核反应实现硫化聚丙烯腈纤维膜孔隙中活性材料的固态转化,用于高装载和独立式锂硫电池阴极

IF 17.2 1区 工程技术 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Hao Liu, Yun Zhang, Yongbing Li, Na Han, Haihui Liu, Xingxiang Zhang
{"title":"通过亲核反应实现硫化聚丙烯腈纤维膜孔隙中活性材料的固态转化,用于高装载和独立式锂硫电池阴极","authors":"Hao Liu,&nbsp;Yun Zhang,&nbsp;Yongbing Li,&nbsp;Na Han,&nbsp;Haihui Liu,&nbsp;Xingxiang Zhang","doi":"10.1007/s42765-024-00391-y","DOIUrl":null,"url":null,"abstract":"<div><p>Sulfurized polyacrylonitrile (SPAN) has emerged as an excellent cathode material for lithium–sulfur batteries (LiSBs), and it addresses the shuttle effect through a solid‒solid reaction. However, the actual sulfur loadings in SPAN often remain below 40 wt%. Due to the susceptibility of polysulfides-to-nucleophilic reactions with electrolytes, achieving physical encapsulation of elemental sulfur is a challenging task. In this study, a free-standing cathode material with a high sulfur/selenium (S/Se) loading of 55 wt% was fabricated by introducing SeS<sub><i>x</i></sub> into the unique lotus root-like pores of porous SeS<sub><i>x</i></sub>PAN nanofiber membranes by electrospinning and a two-step heat treatment. Insoluble compounds were formed due to nucleophilic interactions between lithium polyselenosulfides (LiSeS<sub><i>x</i></sub>) and the electrolyte, which potently blocked the existing lotus root-like pores and facilitated the creation of a thin cathode–electrolyte interphase on the fiber surface. This dual functionality of LiSeS<sub><i>x</i></sub> safeguarded the active material embedded within the porous structure. The SeS<sub>15</sub>PAN cathode exhibited remarkable cycling stability with almost no degradation after 200 cycles at 0.2 C, along with a high discharge capacity of 580 mAh/g. This approach presents a solution for addressing the insufficient sulfur content in SPAN.</p><h3>Graphical Abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":459,"journal":{"name":"Advanced Fiber Materials","volume":"6 3","pages":"772 - 785"},"PeriodicalIF":17.2000,"publicationDate":"2024-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Solid-State Transformations of Active Materials in the Pores of Sulfurized-Polyacrylonitrile Fiber Membranes via Nucleophilic Reactions for High-Loading and Free-Standing Lithium–Sulfur Battery Cathodes\",\"authors\":\"Hao Liu,&nbsp;Yun Zhang,&nbsp;Yongbing Li,&nbsp;Na Han,&nbsp;Haihui Liu,&nbsp;Xingxiang Zhang\",\"doi\":\"10.1007/s42765-024-00391-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Sulfurized polyacrylonitrile (SPAN) has emerged as an excellent cathode material for lithium–sulfur batteries (LiSBs), and it addresses the shuttle effect through a solid‒solid reaction. However, the actual sulfur loadings in SPAN often remain below 40 wt%. Due to the susceptibility of polysulfides-to-nucleophilic reactions with electrolytes, achieving physical encapsulation of elemental sulfur is a challenging task. In this study, a free-standing cathode material with a high sulfur/selenium (S/Se) loading of 55 wt% was fabricated by introducing SeS<sub><i>x</i></sub> into the unique lotus root-like pores of porous SeS<sub><i>x</i></sub>PAN nanofiber membranes by electrospinning and a two-step heat treatment. Insoluble compounds were formed due to nucleophilic interactions between lithium polyselenosulfides (LiSeS<sub><i>x</i></sub>) and the electrolyte, which potently blocked the existing lotus root-like pores and facilitated the creation of a thin cathode–electrolyte interphase on the fiber surface. This dual functionality of LiSeS<sub><i>x</i></sub> safeguarded the active material embedded within the porous structure. The SeS<sub>15</sub>PAN cathode exhibited remarkable cycling stability with almost no degradation after 200 cycles at 0.2 C, along with a high discharge capacity of 580 mAh/g. This approach presents a solution for addressing the insufficient sulfur content in SPAN.</p><h3>Graphical Abstract</h3>\\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":459,\"journal\":{\"name\":\"Advanced Fiber Materials\",\"volume\":\"6 3\",\"pages\":\"772 - 785\"},\"PeriodicalIF\":17.2000,\"publicationDate\":\"2024-03-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Fiber Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s42765-024-00391-y\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Fiber Materials","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s42765-024-00391-y","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

硫化聚丙烯腈(SPAN)已成为锂硫电池(LiSBs)的一种优秀正极材料,它通过固-固反应解决了穿梭效应问题。然而,SPAN 中的实际硫含量往往低于 40 wt%。由于多硫化物容易与电解质发生亲核反应,因此实现元素硫的物理封装是一项具有挑战性的任务。在本研究中,通过电纺丝和两步热处理,将 SeSx 引入多孔 SeSxPAN 纳米纤维膜独特的莲藕状孔隙中,制造出了硫/硒(S/Se)负载量高达 55 wt% 的独立阴极材料。由于锂多硒硫化物(LiSeSx)与电解质之间的亲核相互作用,形成了不溶性化合物,从而有效地阻塞了现有的莲藕状孔隙,并促进了在纤维表面形成薄薄的阴极-电解质间相。LiSeSx 的这种双重功能保护了嵌入多孔结构中的活性材料。SeS15PAN 阴极表现出显著的循环稳定性,在 0.2 C 下循环 200 次后几乎没有降解,同时还具有 580 mAh/g 的高放电容量。这种方法为解决 SPAN 中硫含量不足的问题提供了一种解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Solid-State Transformations of Active Materials in the Pores of Sulfurized-Polyacrylonitrile Fiber Membranes via Nucleophilic Reactions for High-Loading and Free-Standing Lithium–Sulfur Battery Cathodes

Solid-State Transformations of Active Materials in the Pores of Sulfurized-Polyacrylonitrile Fiber Membranes via Nucleophilic Reactions for High-Loading and Free-Standing Lithium–Sulfur Battery Cathodes

Sulfurized polyacrylonitrile (SPAN) has emerged as an excellent cathode material for lithium–sulfur batteries (LiSBs), and it addresses the shuttle effect through a solid‒solid reaction. However, the actual sulfur loadings in SPAN often remain below 40 wt%. Due to the susceptibility of polysulfides-to-nucleophilic reactions with electrolytes, achieving physical encapsulation of elemental sulfur is a challenging task. In this study, a free-standing cathode material with a high sulfur/selenium (S/Se) loading of 55 wt% was fabricated by introducing SeSx into the unique lotus root-like pores of porous SeSxPAN nanofiber membranes by electrospinning and a two-step heat treatment. Insoluble compounds were formed due to nucleophilic interactions between lithium polyselenosulfides (LiSeSx) and the electrolyte, which potently blocked the existing lotus root-like pores and facilitated the creation of a thin cathode–electrolyte interphase on the fiber surface. This dual functionality of LiSeSx safeguarded the active material embedded within the porous structure. The SeS15PAN cathode exhibited remarkable cycling stability with almost no degradation after 200 cycles at 0.2 C, along with a high discharge capacity of 580 mAh/g. This approach presents a solution for addressing the insufficient sulfur content in SPAN.

Graphical Abstract

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
18.70
自引率
11.20%
发文量
109
期刊介绍: Advanced Fiber Materials is a hybrid, peer-reviewed, international and interdisciplinary research journal which aims to publish the most important papers in fibers and fiber-related devices as well as their applications.Indexed by SCIE, EI, Scopus et al. Publishing on fiber or fiber-related materials, technology, engineering and application.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信