{"title":"与 Cartan 子代数相关的泊松交换子代数","authors":"Oksana S. Yakimova","doi":"10.1007/s00229-024-01545-3","DOIUrl":null,"url":null,"abstract":"<p>Let <span>\\({\\mathfrak g}\\)</span> be a reductive Lie algebra and <span>\\(\\mathfrak t\\subset \\mathfrak g\\)</span> a Cartan subalgebra. The <span>\\(\\mathfrak t\\)</span>-stable decomposition <span>\\({\\mathfrak g}=\\mathfrak t\\oplus {\\mathfrak m}\\)</span> yields a bi-grading of the symmetric algebra <span>\\({\\mathcal {S}}({\\mathfrak g})\\)</span>. The subalgebra <span>\\({\\mathcal {Z}}_{({\\mathfrak g},\\mathfrak t)}\\)</span> generated by the bi-homogenous components of the symmetric invariants <span>\\(F\\in {\\mathcal {S}}({\\mathfrak g})^{\\mathfrak g}\\)</span> is known to be Poisson commutative. Furthermore the algebra <span>\\({\\tilde{{\\mathcal {Z}}}}=\\textsf{alg}\\langle {\\mathcal {Z}}_{({\\mathfrak g},{\\mathfrak t})},{\\mathfrak t}\\rangle \\)</span> is also Poisson commutative. We investigate relations between <span>\\({\\tilde{{\\mathcal {Z}}}}\\)</span> and Mishchenko–Fomenko subalgebras. In type <span>A</span>, we construct a quantisation of <span>\\({\\tilde{{\\mathcal {Z}}}}\\)</span> making use of quantum Mishchenko–Fomenko algebras.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Poisson commutative subalgebras associated with a Cartan subalgebra\",\"authors\":\"Oksana S. Yakimova\",\"doi\":\"10.1007/s00229-024-01545-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Let <span>\\\\({\\\\mathfrak g}\\\\)</span> be a reductive Lie algebra and <span>\\\\(\\\\mathfrak t\\\\subset \\\\mathfrak g\\\\)</span> a Cartan subalgebra. The <span>\\\\(\\\\mathfrak t\\\\)</span>-stable decomposition <span>\\\\({\\\\mathfrak g}=\\\\mathfrak t\\\\oplus {\\\\mathfrak m}\\\\)</span> yields a bi-grading of the symmetric algebra <span>\\\\({\\\\mathcal {S}}({\\\\mathfrak g})\\\\)</span>. The subalgebra <span>\\\\({\\\\mathcal {Z}}_{({\\\\mathfrak g},\\\\mathfrak t)}\\\\)</span> generated by the bi-homogenous components of the symmetric invariants <span>\\\\(F\\\\in {\\\\mathcal {S}}({\\\\mathfrak g})^{\\\\mathfrak g}\\\\)</span> is known to be Poisson commutative. Furthermore the algebra <span>\\\\({\\\\tilde{{\\\\mathcal {Z}}}}=\\\\textsf{alg}\\\\langle {\\\\mathcal {Z}}_{({\\\\mathfrak g},{\\\\mathfrak t})},{\\\\mathfrak t}\\\\rangle \\\\)</span> is also Poisson commutative. We investigate relations between <span>\\\\({\\\\tilde{{\\\\mathcal {Z}}}}\\\\)</span> and Mishchenko–Fomenko subalgebras. In type <span>A</span>, we construct a quantisation of <span>\\\\({\\\\tilde{{\\\\mathcal {Z}}}}\\\\)</span> making use of quantum Mishchenko–Fomenko algebras.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-03-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00229-024-01545-3\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00229-024-01545-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Poisson commutative subalgebras associated with a Cartan subalgebra
Let \({\mathfrak g}\) be a reductive Lie algebra and \(\mathfrak t\subset \mathfrak g\) a Cartan subalgebra. The \(\mathfrak t\)-stable decomposition \({\mathfrak g}=\mathfrak t\oplus {\mathfrak m}\) yields a bi-grading of the symmetric algebra \({\mathcal {S}}({\mathfrak g})\). The subalgebra \({\mathcal {Z}}_{({\mathfrak g},\mathfrak t)}\) generated by the bi-homogenous components of the symmetric invariants \(F\in {\mathcal {S}}({\mathfrak g})^{\mathfrak g}\) is known to be Poisson commutative. Furthermore the algebra \({\tilde{{\mathcal {Z}}}}=\textsf{alg}\langle {\mathcal {Z}}_{({\mathfrak g},{\mathfrak t})},{\mathfrak t}\rangle \) is also Poisson commutative. We investigate relations between \({\tilde{{\mathcal {Z}}}}\) and Mishchenko–Fomenko subalgebras. In type A, we construct a quantisation of \({\tilde{{\mathcal {Z}}}}\) making use of quantum Mishchenko–Fomenko algebras.