{"title":"ModFOLD9:独立评估三维蛋白质模型质量的网络服务器","authors":"","doi":"10.1016/j.jmb.2024.168531","DOIUrl":null,"url":null,"abstract":"<div><p>Accurate models of protein tertiary structures are now available from numerous advanced prediction methods, although the accuracy of each method often varies depending on the specific protein target. Additionally, many models may still contain significant local errors. Therefore, reliable, independent model quality estimates are essential both for identifying errors and selecting the very best models for further biological investigations. ModFOLD9 is a leading independent server for detecting the local errors in models produced by any method, and it can accurately discriminate between high-quality models from multiple alternative approaches. ModFOLD9 incorporates several new scores from deep learning-based approaches, leading to greatly improved prediction accuracy compared with earlier versions of the server. ModFOLD9 is continuously independently benchmarked, and it is shown to be highly competitive with other public servers. ModFOLD9 is freely available at <span><span>https://www.reading.ac.uk/bioinf/ModFOLD/</span><svg><path></path></svg></span>.</p></div>","PeriodicalId":369,"journal":{"name":"Journal of Molecular Biology","volume":"436 17","pages":"Article 168531"},"PeriodicalIF":4.7000,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0022283624001189/pdfft?md5=9949e23171833ce240958abd18778192&pid=1-s2.0-S0022283624001189-main.pdf","citationCount":"0","resultStr":"{\"title\":\"ModFOLD9: A Web Server for Independent Estimates of 3D Protein Model Quality\",\"authors\":\"\",\"doi\":\"10.1016/j.jmb.2024.168531\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Accurate models of protein tertiary structures are now available from numerous advanced prediction methods, although the accuracy of each method often varies depending on the specific protein target. Additionally, many models may still contain significant local errors. Therefore, reliable, independent model quality estimates are essential both for identifying errors and selecting the very best models for further biological investigations. ModFOLD9 is a leading independent server for detecting the local errors in models produced by any method, and it can accurately discriminate between high-quality models from multiple alternative approaches. ModFOLD9 incorporates several new scores from deep learning-based approaches, leading to greatly improved prediction accuracy compared with earlier versions of the server. ModFOLD9 is continuously independently benchmarked, and it is shown to be highly competitive with other public servers. ModFOLD9 is freely available at <span><span>https://www.reading.ac.uk/bioinf/ModFOLD/</span><svg><path></path></svg></span>.</p></div>\",\"PeriodicalId\":369,\"journal\":{\"name\":\"Journal of Molecular Biology\",\"volume\":\"436 17\",\"pages\":\"Article 168531\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2024-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0022283624001189/pdfft?md5=9949e23171833ce240958abd18778192&pid=1-s2.0-S0022283624001189-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Molecular Biology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022283624001189\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular Biology","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022283624001189","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
ModFOLD9: A Web Server for Independent Estimates of 3D Protein Model Quality
Accurate models of protein tertiary structures are now available from numerous advanced prediction methods, although the accuracy of each method often varies depending on the specific protein target. Additionally, many models may still contain significant local errors. Therefore, reliable, independent model quality estimates are essential both for identifying errors and selecting the very best models for further biological investigations. ModFOLD9 is a leading independent server for detecting the local errors in models produced by any method, and it can accurately discriminate between high-quality models from multiple alternative approaches. ModFOLD9 incorporates several new scores from deep learning-based approaches, leading to greatly improved prediction accuracy compared with earlier versions of the server. ModFOLD9 is continuously independently benchmarked, and it is shown to be highly competitive with other public servers. ModFOLD9 is freely available at https://www.reading.ac.uk/bioinf/ModFOLD/.
期刊介绍:
Journal of Molecular Biology (JMB) provides high quality, comprehensive and broad coverage in all areas of molecular biology. The journal publishes original scientific research papers that provide mechanistic and functional insights and report a significant advance to the field. The journal encourages the submission of multidisciplinary studies that use complementary experimental and computational approaches to address challenging biological questions.
Research areas include but are not limited to: Biomolecular interactions, signaling networks, systems biology; Cell cycle, cell growth, cell differentiation; Cell death, autophagy; Cell signaling and regulation; Chemical biology; Computational biology, in combination with experimental studies; DNA replication, repair, and recombination; Development, regenerative biology, mechanistic and functional studies of stem cells; Epigenetics, chromatin structure and function; Gene expression; Membrane processes, cell surface proteins and cell-cell interactions; Methodological advances, both experimental and theoretical, including databases; Microbiology, virology, and interactions with the host or environment; Microbiota mechanistic and functional studies; Nuclear organization; Post-translational modifications, proteomics; Processing and function of biologically important macromolecules and complexes; Molecular basis of disease; RNA processing, structure and functions of non-coding RNAs, transcription; Sorting, spatiotemporal organization, trafficking; Structural biology; Synthetic biology; Translation, protein folding, chaperones, protein degradation and quality control.