一类不连续拉格朗日最小值的部分正则性

Pub Date : 2024-03-14 DOI:10.1007/s00229-024-01547-1
Roberto Colombo
{"title":"一类不连续拉格朗日最小值的部分正则性","authors":"Roberto Colombo","doi":"10.1007/s00229-024-01547-1","DOIUrl":null,"url":null,"abstract":"<p>We study a one-dimensional Lagrangian problem including the variational reformulation, derived in a recent work of Ambrosio–Baradat–Brenier, of the discrete Monge–Ampère gravitational model, which describes the motion of interacting particles whose dynamics is ruled by the optimal transport problem. The more general action-type functional we consider contains a discontinuous potential term related to the descending slope of the opposite squared distance function from a generic discrete set in <span>\\(\\mathbb {R}^{d}\\)</span>. We exploit the underlying geometrical structure provided by the associated Voronoi decomposition of the space to obtain <span>\\(C^{1,1}\\)</span>-regularity for local minimizers out of a finite number of shock times.\n</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Partial regularity for minimizers of a class of discontinuous Lagrangians\",\"authors\":\"Roberto Colombo\",\"doi\":\"10.1007/s00229-024-01547-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We study a one-dimensional Lagrangian problem including the variational reformulation, derived in a recent work of Ambrosio–Baradat–Brenier, of the discrete Monge–Ampère gravitational model, which describes the motion of interacting particles whose dynamics is ruled by the optimal transport problem. The more general action-type functional we consider contains a discontinuous potential term related to the descending slope of the opposite squared distance function from a generic discrete set in <span>\\\\(\\\\mathbb {R}^{d}\\\\)</span>. We exploit the underlying geometrical structure provided by the associated Voronoi decomposition of the space to obtain <span>\\\\(C^{1,1}\\\\)</span>-regularity for local minimizers out of a finite number of shock times.\\n</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-03-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00229-024-01547-1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00229-024-01547-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了一个一维拉格朗日问题,其中包括安布罗西奥-巴拉达特-布雷尼尔(Ambrosio-Baradat-Brenier)在其最新研究中得出的离散蒙日-安培引力模型的变分重述,该模型描述了相互作用粒子的运动,其动力学受最优输运问题支配。我们所考虑的更一般的作用型函数包含一个不连续的势项,它与从\(\mathbb {R}^{d}\) 中的一般离散集合出发的相反平方距离函数的下降斜率有关。我们利用空间的相关 Voronoi 分解所提供的基本几何结构,在有限次冲击中获得局部最小值的 \(C^{1,1}\) 规律性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Partial regularity for minimizers of a class of discontinuous Lagrangians

We study a one-dimensional Lagrangian problem including the variational reformulation, derived in a recent work of Ambrosio–Baradat–Brenier, of the discrete Monge–Ampère gravitational model, which describes the motion of interacting particles whose dynamics is ruled by the optimal transport problem. The more general action-type functional we consider contains a discontinuous potential term related to the descending slope of the opposite squared distance function from a generic discrete set in \(\mathbb {R}^{d}\). We exploit the underlying geometrical structure provided by the associated Voronoi decomposition of the space to obtain \(C^{1,1}\)-regularity for local minimizers out of a finite number of shock times.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信