关于双非局域 Hele-Shaw-Cahn-Hilliard 系统:推导与二维拟合

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
{"title":"关于双非局域 Hele-Shaw-Cahn-Hilliard 系统:推导与二维拟合","authors":"","doi":"10.1007/s00332-024-10018-6","DOIUrl":null,"url":null,"abstract":"<h3>Abstract</h3> <p>Starting from a classic non-local (in space) Cahn–Hilliard–Stokes model for two-phase flow in a thin heterogeneous fluid domain, we rigorously derive by mathematical homogenization a new effective mixture model consisting of a coupling of a non-local (in time) Hele-Shaw equation with a non-local (in space) Cahn–Hilliard equation. We then analyse the resulting model and prove its well-posedness. A key to the analysis is the new concept of sigma-convergence in thin heterogeneous domains allowing to pass to the homogenization limit with respect to the heterogeneities and the domain thickness simultaneously.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the Doubly Non-local Hele-Shaw–Cahn–Hilliard System: Derivation and 2D Well-Posedness\",\"authors\":\"\",\"doi\":\"10.1007/s00332-024-10018-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3>Abstract</h3> <p>Starting from a classic non-local (in space) Cahn–Hilliard–Stokes model for two-phase flow in a thin heterogeneous fluid domain, we rigorously derive by mathematical homogenization a new effective mixture model consisting of a coupling of a non-local (in time) Hele-Shaw equation with a non-local (in space) Cahn–Hilliard equation. We then analyse the resulting model and prove its well-posedness. A key to the analysis is the new concept of sigma-convergence in thin heterogeneous domains allowing to pass to the homogenization limit with respect to the heterogeneities and the domain thickness simultaneously.</p>\",\"PeriodicalId\":2,\"journal\":{\"name\":\"ACS Applied Bio Materials\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2024-03-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Bio Materials\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00332-024-10018-6\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00332-024-10018-6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

摘要

摘要 从经典的非局部(空间)Cahn-Hilliard-Stokes 模型开始,我们通过数学同质化严格推导出了一个新的有效混合模型,该模型由一个非局部(时间)Hele-Shaw 方程和一个非局部(空间)Cahn-Hilliard 方程耦合而成。然后,我们对由此产生的模型进行分析,并证明其良好拟合性。分析的关键是薄异质域中的西格玛收敛新概念,它允许同时通过异质和域厚度的均质化极限。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the Doubly Non-local Hele-Shaw–Cahn–Hilliard System: Derivation and 2D Well-Posedness

Abstract

Starting from a classic non-local (in space) Cahn–Hilliard–Stokes model for two-phase flow in a thin heterogeneous fluid domain, we rigorously derive by mathematical homogenization a new effective mixture model consisting of a coupling of a non-local (in time) Hele-Shaw equation with a non-local (in space) Cahn–Hilliard equation. We then analyse the resulting model and prove its well-posedness. A key to the analysis is the new concept of sigma-convergence in thin heterogeneous domains allowing to pass to the homogenization limit with respect to the heterogeneities and the domain thickness simultaneously.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信