格罗斯-涅乌模型中 RG 流的结构稳定性

IF 1.4 3区 物理与天体物理 Q2 PHYSICS, MATHEMATICAL
J. Dimock, Cheng Yuan
{"title":"格罗斯-涅乌模型中 RG 流的结构稳定性","authors":"J. Dimock,&nbsp;Cheng Yuan","doi":"10.1007/s00023-024-01427-0","DOIUrl":null,"url":null,"abstract":"<div><p>We study flow of renormalization group (RG) transformations for the massless Gross–Neveu model in a non-perturbative formulation. The model is defined on a two-dimensional Euclidean space with a finite volume. The quadratic approximation to the flow stays bounded after suitable renormalization. We show that for weak coupling this property also is true for the complete flow. As an application we prove an ultraviolet stability bound for the model. Our treatment is an application of a method of Bauerschmidt, Brydges, and Slade. The method was developed for an infrared problem and is now applied to an ultraviolet problem.</p></div>","PeriodicalId":463,"journal":{"name":"Annales Henri Poincaré","volume":"25 12","pages":"5113 - 5186"},"PeriodicalIF":1.4000,"publicationDate":"2024-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Structural Stability of the RG Flow in the Gross–Neveu Model\",\"authors\":\"J. Dimock,&nbsp;Cheng Yuan\",\"doi\":\"10.1007/s00023-024-01427-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We study flow of renormalization group (RG) transformations for the massless Gross–Neveu model in a non-perturbative formulation. The model is defined on a two-dimensional Euclidean space with a finite volume. The quadratic approximation to the flow stays bounded after suitable renormalization. We show that for weak coupling this property also is true for the complete flow. As an application we prove an ultraviolet stability bound for the model. Our treatment is an application of a method of Bauerschmidt, Brydges, and Slade. The method was developed for an infrared problem and is now applied to an ultraviolet problem.</p></div>\",\"PeriodicalId\":463,\"journal\":{\"name\":\"Annales Henri Poincaré\",\"volume\":\"25 12\",\"pages\":\"5113 - 5186\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-03-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annales Henri Poincaré\",\"FirstCategoryId\":\"4\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00023-024-01427-0\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MATHEMATICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annales Henri Poincaré","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1007/s00023-024-01427-0","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

摘要

我们以非微扰形式研究了无质量格罗斯-涅乌模型的重正化群(RG)变换流。模型定义在有限体积的二维欧几里得空间上。在适当的重正化之后,流的二次近似保持有界。我们证明,对于弱耦合,这一特性对于完整流也是正确的。作为应用,我们证明了模型的紫外稳定性约束。我们的处理方法是对鲍尔斯施密特、布赖杰斯和斯莱德方法的应用。该方法是针对红外问题开发的,现在应用于紫外问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Structural Stability of the RG Flow in the Gross–Neveu Model

We study flow of renormalization group (RG) transformations for the massless Gross–Neveu model in a non-perturbative formulation. The model is defined on a two-dimensional Euclidean space with a finite volume. The quadratic approximation to the flow stays bounded after suitable renormalization. We show that for weak coupling this property also is true for the complete flow. As an application we prove an ultraviolet stability bound for the model. Our treatment is an application of a method of Bauerschmidt, Brydges, and Slade. The method was developed for an infrared problem and is now applied to an ultraviolet problem.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Annales Henri Poincaré
Annales Henri Poincaré 物理-物理:粒子与场物理
CiteScore
3.00
自引率
6.70%
发文量
108
审稿时长
6-12 weeks
期刊介绍: The two journals Annales de l''Institut Henri Poincaré, physique théorique and Helvetica Physical Acta merged into a single new journal under the name Annales Henri Poincaré - A Journal of Theoretical and Mathematical Physics edited jointly by the Institut Henri Poincaré and by the Swiss Physical Society. The goal of the journal is to serve the international scientific community in theoretical and mathematical physics by collecting and publishing original research papers meeting the highest professional standards in the field. The emphasis will be on analytical theoretical and mathematical physics in a broad sense.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信