关于一些完全正映射的光谱

IF 0.8 3区 数学 Q2 MATHEMATICS
Yuan Li, Shuhui Gao, Cong Zhao, Nan Ma
{"title":"关于一些完全正映射的光谱","authors":"Yuan Li, Shuhui Gao, Cong Zhao, Nan Ma","doi":"10.1007/s11117-024-01037-4","DOIUrl":null,"url":null,"abstract":"<p>Let <span>\\(\\sum _{i=1}^{\\infty }A_iA_i^*\\)</span> and <span>\\(\\sum _{i=1}^{\\infty }A_i^*A_i\\)</span> converge in the strong operator topology. We study the map <span>\\(\\Phi _{{\\mathcal {A}}}\\)</span> defined on the Banach space of all bounded linear operators <span>\\({\\mathcal {B(H)}}\\)</span> by <span>\\(\\Phi _{{\\mathcal {A}}}(X)=\\sum _{i=1}^{\\infty }A_iXA_i^*\\)</span> and its restriction <span>\\(\\Phi _{{\\mathcal {A}}}|_{\\mathcal {K(H})}\\)</span> to the Banach space of all compact operators <span>\\(\\mathcal {K(H)}.\\)</span> We first consider the relationship between the boundary eigenvalues of <span>\\(\\Phi _{{\\mathcal {A}}}|_{\\mathcal {K(H})}\\)</span> and its fixed points. Also, we show that the spectra of <span>\\(\\Phi _{{\\mathcal {A}}}\\)</span> and <span>\\(\\Phi _{{\\mathcal {A}}}|_{\\mathcal {K(H})}\\)</span> are the same sets. In particular, the spectra of two completely positive maps involving the unilateral shift are described.</p>","PeriodicalId":54596,"journal":{"name":"Positivity","volume":"99 1","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2024-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On spectra of some completely positive maps\",\"authors\":\"Yuan Li, Shuhui Gao, Cong Zhao, Nan Ma\",\"doi\":\"10.1007/s11117-024-01037-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Let <span>\\\\(\\\\sum _{i=1}^{\\\\infty }A_iA_i^*\\\\)</span> and <span>\\\\(\\\\sum _{i=1}^{\\\\infty }A_i^*A_i\\\\)</span> converge in the strong operator topology. We study the map <span>\\\\(\\\\Phi _{{\\\\mathcal {A}}}\\\\)</span> defined on the Banach space of all bounded linear operators <span>\\\\({\\\\mathcal {B(H)}}\\\\)</span> by <span>\\\\(\\\\Phi _{{\\\\mathcal {A}}}(X)=\\\\sum _{i=1}^{\\\\infty }A_iXA_i^*\\\\)</span> and its restriction <span>\\\\(\\\\Phi _{{\\\\mathcal {A}}}|_{\\\\mathcal {K(H})}\\\\)</span> to the Banach space of all compact operators <span>\\\\(\\\\mathcal {K(H)}.\\\\)</span> We first consider the relationship between the boundary eigenvalues of <span>\\\\(\\\\Phi _{{\\\\mathcal {A}}}|_{\\\\mathcal {K(H})}\\\\)</span> and its fixed points. Also, we show that the spectra of <span>\\\\(\\\\Phi _{{\\\\mathcal {A}}}\\\\)</span> and <span>\\\\(\\\\Phi _{{\\\\mathcal {A}}}|_{\\\\mathcal {K(H})}\\\\)</span> are the same sets. In particular, the spectra of two completely positive maps involving the unilateral shift are described.</p>\",\"PeriodicalId\":54596,\"journal\":{\"name\":\"Positivity\",\"volume\":\"99 1\",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-03-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Positivity\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s11117-024-01037-4\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Positivity","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11117-024-01037-4","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

让 \(\sum _{i=1}^{\infty }A_iA_i^*\) 和 \(\sum _{i=1}^{\infty }A_i^*A_i\) 在强算子拓扑中收敛。我们研究在所有有界线性算子的巴拿赫空间上定义的映射 \(\Phi _{\mathcal {A}}}(X)=\sum)和它到所有紧凑算子的巴拿赫空间的限制(\(\Phi _{\mathcal {A}}|_{\mathcal {K(H})}\.\)我们首先考虑 \(\Phi _{\mathcal {A}}|_{\mathcal {K(H})}\) 的边界特征值与其定点之间的关系。同时,我们还证明了 \(\Phi _{\mathcal {A}}) 和 \(\Phi _{\mathcal {A}}|_{\mathcal {K(H})}\) 的谱是相同的集合。特别是,描述了涉及单边移动的两个完全正映射的光谱。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On spectra of some completely positive maps

Let \(\sum _{i=1}^{\infty }A_iA_i^*\) and \(\sum _{i=1}^{\infty }A_i^*A_i\) converge in the strong operator topology. We study the map \(\Phi _{{\mathcal {A}}}\) defined on the Banach space of all bounded linear operators \({\mathcal {B(H)}}\) by \(\Phi _{{\mathcal {A}}}(X)=\sum _{i=1}^{\infty }A_iXA_i^*\) and its restriction \(\Phi _{{\mathcal {A}}}|_{\mathcal {K(H})}\) to the Banach space of all compact operators \(\mathcal {K(H)}.\) We first consider the relationship between the boundary eigenvalues of \(\Phi _{{\mathcal {A}}}|_{\mathcal {K(H})}\) and its fixed points. Also, we show that the spectra of \(\Phi _{{\mathcal {A}}}\) and \(\Phi _{{\mathcal {A}}}|_{\mathcal {K(H})}\) are the same sets. In particular, the spectra of two completely positive maps involving the unilateral shift are described.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Positivity
Positivity 数学-数学
CiteScore
1.80
自引率
10.00%
发文量
88
审稿时长
>12 weeks
期刊介绍: The purpose of Positivity is to provide an outlet for high quality original research in all areas of analysis and its applications to other disciplines having a clear and substantive link to the general theme of positivity. Specifically, articles that illustrate applications of positivity to other disciplines - including but not limited to - economics, engineering, life sciences, physics and statistical decision theory are welcome. The scope of Positivity is to publish original papers in all areas of mathematics and its applications that are influenced by positivity concepts.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信