黎曼流形上超临界增长的半线性椭圆方程的奇异解

Shoichi Hasegawa
{"title":"黎曼流形上超临界增长的半线性椭圆方程的奇异解","authors":"Shoichi Hasegawa","doi":"10.1007/s00030-024-00926-7","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we shall discuss singular solutions of semilinear elliptic equations with general supercritical growth on spherically symmetric Riemannian manifolds. More precisely, we shall prove the existence, uniqueness and asymptotic behavior of the singular radial solution, and also show that regular radial solutions converges to the singular solution. In particular, we shall provide these properties on spherically symmetric Riemannian manifolds including the hyperbolic space as well as the sphere.</p>","PeriodicalId":501665,"journal":{"name":"Nonlinear Differential Equations and Applications (NoDEA)","volume":"60 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Singular solutions of semilinear elliptic equations with supercritical growth on Riemannian manifolds\",\"authors\":\"Shoichi Hasegawa\",\"doi\":\"10.1007/s00030-024-00926-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, we shall discuss singular solutions of semilinear elliptic equations with general supercritical growth on spherically symmetric Riemannian manifolds. More precisely, we shall prove the existence, uniqueness and asymptotic behavior of the singular radial solution, and also show that regular radial solutions converges to the singular solution. In particular, we shall provide these properties on spherically symmetric Riemannian manifolds including the hyperbolic space as well as the sphere.</p>\",\"PeriodicalId\":501665,\"journal\":{\"name\":\"Nonlinear Differential Equations and Applications (NoDEA)\",\"volume\":\"60 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nonlinear Differential Equations and Applications (NoDEA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s00030-024-00926-7\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nonlinear Differential Equations and Applications (NoDEA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00030-024-00926-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文将讨论球对称黎曼流形上具有一般超临界增长的半线性椭圆方程的奇异解。更确切地说,我们将证明奇异径向解的存在性、唯一性和渐近行为,并证明常规径向解收敛于奇异解。特别是,我们将在球对称黎曼流形(包括双曲空间和球面)上提供这些性质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Singular solutions of semilinear elliptic equations with supercritical growth on Riemannian manifolds

In this paper, we shall discuss singular solutions of semilinear elliptic equations with general supercritical growth on spherically symmetric Riemannian manifolds. More precisely, we shall prove the existence, uniqueness and asymptotic behavior of the singular radial solution, and also show that regular radial solutions converges to the singular solution. In particular, we shall provide these properties on spherically symmetric Riemannian manifolds including the hyperbolic space as well as the sphere.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信