{"title":"有效双曲算子考奇问题的更直接方法","authors":"","doi":"10.1007/s11868-024-00592-4","DOIUrl":null,"url":null,"abstract":"<h3>Abstract</h3> <p>This paper is devoted to a simpler derivation of energy estimates and a proof of the well-posedness, compared to previously existing ones, for effectively hyperbolic Cauchy problem. One difference is that instead of using the general Fourier integral operator, we only use a change of local coordinates <em>x</em> (of the configuration space) leaving the time variable invariant. Another difference is an efficient application of the Weyl-Hörmander calculus of pseudodifferential operators associated with several different metrics.</p>","PeriodicalId":48793,"journal":{"name":"Journal of Pseudo-Differential Operators and Applications","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2024-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A more direct way to the Cauchy problem for effectively hyperbolic operators\",\"authors\":\"\",\"doi\":\"10.1007/s11868-024-00592-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3>Abstract</h3> <p>This paper is devoted to a simpler derivation of energy estimates and a proof of the well-posedness, compared to previously existing ones, for effectively hyperbolic Cauchy problem. One difference is that instead of using the general Fourier integral operator, we only use a change of local coordinates <em>x</em> (of the configuration space) leaving the time variable invariant. Another difference is an efficient application of the Weyl-Hörmander calculus of pseudodifferential operators associated with several different metrics.</p>\",\"PeriodicalId\":48793,\"journal\":{\"name\":\"Journal of Pseudo-Differential Operators and Applications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-03-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Pseudo-Differential Operators and Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s11868-024-00592-4\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Pseudo-Differential Operators and Applications","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11868-024-00592-4","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
A more direct way to the Cauchy problem for effectively hyperbolic operators
Abstract
This paper is devoted to a simpler derivation of energy estimates and a proof of the well-posedness, compared to previously existing ones, for effectively hyperbolic Cauchy problem. One difference is that instead of using the general Fourier integral operator, we only use a change of local coordinates x (of the configuration space) leaving the time variable invariant. Another difference is an efficient application of the Weyl-Hörmander calculus of pseudodifferential operators associated with several different metrics.
期刊介绍:
The Journal of Pseudo-Differential Operators and Applications is a forum for high quality papers in the mathematics, applications and numerical analysis of pseudo-differential operators. Pseudo-differential operators are understood in a very broad sense embracing but not limited to harmonic analysis, functional analysis, operator theory and algebras, partial differential equations, geometry, mathematical physics and novel applications in engineering, geophysics and medical sciences.