{"title":"双四元数偏移线性典型变换的不确定性原理","authors":"Wen-Biao Gao","doi":"10.1007/s11868-024-00590-6","DOIUrl":null,"url":null,"abstract":"<p>In this paper, the offset linear canonical transform associated with biquaternion is defined, which is called the biquaternion offset linear canonical transforms (BiQOLCT). Then, the inverse transform and Plancherel formula of the BiQOLCT are obtained. Next, Heisenberg uncertainty principle and Donoho-Stark’s uncertainty principle for the BiQOLCT are established. Finally, as an application, we study signal recovery by using Donoho-Stark’s uncertainty principle associated with the BiQOLCT.</p>","PeriodicalId":48793,"journal":{"name":"Journal of Pseudo-Differential Operators and Applications","volume":"21 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2024-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Uncertainty principles for the biquaternion offset linear canonical transform\",\"authors\":\"Wen-Biao Gao\",\"doi\":\"10.1007/s11868-024-00590-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, the offset linear canonical transform associated with biquaternion is defined, which is called the biquaternion offset linear canonical transforms (BiQOLCT). Then, the inverse transform and Plancherel formula of the BiQOLCT are obtained. Next, Heisenberg uncertainty principle and Donoho-Stark’s uncertainty principle for the BiQOLCT are established. Finally, as an application, we study signal recovery by using Donoho-Stark’s uncertainty principle associated with the BiQOLCT.</p>\",\"PeriodicalId\":48793,\"journal\":{\"name\":\"Journal of Pseudo-Differential Operators and Applications\",\"volume\":\"21 1\",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-03-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Pseudo-Differential Operators and Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s11868-024-00590-6\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Pseudo-Differential Operators and Applications","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11868-024-00590-6","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
Uncertainty principles for the biquaternion offset linear canonical transform
In this paper, the offset linear canonical transform associated with biquaternion is defined, which is called the biquaternion offset linear canonical transforms (BiQOLCT). Then, the inverse transform and Plancherel formula of the BiQOLCT are obtained. Next, Heisenberg uncertainty principle and Donoho-Stark’s uncertainty principle for the BiQOLCT are established. Finally, as an application, we study signal recovery by using Donoho-Stark’s uncertainty principle associated with the BiQOLCT.
期刊介绍:
The Journal of Pseudo-Differential Operators and Applications is a forum for high quality papers in the mathematics, applications and numerical analysis of pseudo-differential operators. Pseudo-differential operators are understood in a very broad sense embracing but not limited to harmonic analysis, functional analysis, operator theory and algebras, partial differential equations, geometry, mathematical physics and novel applications in engineering, geophysics and medical sciences.