{"title":"带有损失规避和过去最大消费参考的最优消费","authors":"Xun Li, Xiang Yu, Qinyi Zhang","doi":"10.1137/22m149212x","DOIUrl":null,"url":null,"abstract":"SIAM Journal on Financial Mathematics, Volume 15, Issue 1, Page 121-160, March 2024. <br/> Abstract. This paper studies an optimal consumption problem for a loss-averse agent with reference to past consumption maximum. To account for loss aversion on relative consumption, an S-shaped utility is adopted that measures the difference between the nonnegative consumption rate and a fraction of the historical spending peak. We consider the concave envelope of the utility with respect to consumption, allowing us to focus on an auxiliary HJB variational inequality on the strength of concavification principle and dynamic programming arguments. By applying the dual-transform and smooth-fit conditions, the auxiliary HJB variational inequality is solved in piecewise closed form, and some thresholds of the wealth variable are obtained. The optimal consumption and investment control can be derived in the piecewise feedback form. The rigorous verification proofs on optimality and concavification principle are provided. Some numerical sensitivity analysis and financial implications are also presented.","PeriodicalId":48880,"journal":{"name":"SIAM Journal on Financial Mathematics","volume":"109 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2024-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimal Consumption with Loss Aversion and Reference to Past Spending Maximum\",\"authors\":\"Xun Li, Xiang Yu, Qinyi Zhang\",\"doi\":\"10.1137/22m149212x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"SIAM Journal on Financial Mathematics, Volume 15, Issue 1, Page 121-160, March 2024. <br/> Abstract. This paper studies an optimal consumption problem for a loss-averse agent with reference to past consumption maximum. To account for loss aversion on relative consumption, an S-shaped utility is adopted that measures the difference between the nonnegative consumption rate and a fraction of the historical spending peak. We consider the concave envelope of the utility with respect to consumption, allowing us to focus on an auxiliary HJB variational inequality on the strength of concavification principle and dynamic programming arguments. By applying the dual-transform and smooth-fit conditions, the auxiliary HJB variational inequality is solved in piecewise closed form, and some thresholds of the wealth variable are obtained. The optimal consumption and investment control can be derived in the piecewise feedback form. The rigorous verification proofs on optimality and concavification principle are provided. Some numerical sensitivity analysis and financial implications are also presented.\",\"PeriodicalId\":48880,\"journal\":{\"name\":\"SIAM Journal on Financial Mathematics\",\"volume\":\"109 1\",\"pages\":\"\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-03-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SIAM Journal on Financial Mathematics\",\"FirstCategoryId\":\"96\",\"ListUrlMain\":\"https://doi.org/10.1137/22m149212x\",\"RegionNum\":4,\"RegionCategory\":\"经济学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BUSINESS, FINANCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM Journal on Financial Mathematics","FirstCategoryId":"96","ListUrlMain":"https://doi.org/10.1137/22m149212x","RegionNum":4,"RegionCategory":"经济学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BUSINESS, FINANCE","Score":null,"Total":0}
Optimal Consumption with Loss Aversion and Reference to Past Spending Maximum
SIAM Journal on Financial Mathematics, Volume 15, Issue 1, Page 121-160, March 2024. Abstract. This paper studies an optimal consumption problem for a loss-averse agent with reference to past consumption maximum. To account for loss aversion on relative consumption, an S-shaped utility is adopted that measures the difference between the nonnegative consumption rate and a fraction of the historical spending peak. We consider the concave envelope of the utility with respect to consumption, allowing us to focus on an auxiliary HJB variational inequality on the strength of concavification principle and dynamic programming arguments. By applying the dual-transform and smooth-fit conditions, the auxiliary HJB variational inequality is solved in piecewise closed form, and some thresholds of the wealth variable are obtained. The optimal consumption and investment control can be derived in the piecewise feedback form. The rigorous verification proofs on optimality and concavification principle are provided. Some numerical sensitivity analysis and financial implications are also presented.
期刊介绍:
SIAM Journal on Financial Mathematics (SIFIN) addresses theoretical developments in financial mathematics as well as breakthroughs in the computational challenges they encompass. The journal provides a common platform for scholars interested in the mathematical theory of finance as well as practitioners interested in rigorous treatments of the scientific computational issues related to implementation. On the theoretical side, the journal publishes articles with demonstrable mathematical developments motivated by models of modern finance. On the computational side, it publishes articles introducing new methods and algorithms representing significant (as opposed to incremental) improvements on the existing state of affairs of modern numerical implementations of applied financial mathematics.