Guangyue Cao, Ying Tong, Xianchun Tang, Xiangdong Wang, Xiang Li, Lei Wang
{"title":"海南地幔羽流对地壳物质的深层再循环:来自海南岛玄武岩锌-锶-钕-铅同位素的证据","authors":"Guangyue Cao, Ying Tong, Xianchun Tang, Xiangdong Wang, Xiang Li, Lei Wang","doi":"10.1007/s00410-024-02112-5","DOIUrl":null,"url":null,"abstract":"<div><p>Understanding the compositional heterogeneity of the deep mantle requires identifying the nature of recycled crustal materials in the sources of mantle-plume-related magmas. However, it is still unclear whether or not the deep mantle contains recycled carbonates from the Earth’s surface. In this study, we present comprehensive data on whole-rock high-precision zinc isotopes, as well as major- and trace-element geochemistry, and Sr–Nd–Pb isotopes of basalts on Hainan Island to examine the influence of recycled materials (particularly carbonates) on the mantle source heterogeneity of the Hainan mantle plume. The basalts have highly variable δ<sup>66</sup>Zn values ranging from 0.21‰ to 0.42‰. These variable Zn isotopic compositions cannot be accounted for by processes such as post-magmatic alteration and crustal contamination, or by fractional crystallization and partial melting; instead, they reflect mantle heterogeneity. Comparisons of the major- and trace-element compositions (e.g., CaO and TiO<sub>2</sub> contents and Zn/Fe and Fe/Mn ratios), FC3MS and FCKANTMS peridotite and pyroxenite melting parameters, as well as pseudo-ternary projections of the primary Hainan basaltic magmas with experimental data suggest that the primary magmas were partial melts of silica-deficient pyroxenitic lithologies with peridotite residue. The heterogeneous geochemical and lithological compositions of the Hainan basalts indicate that recycled sedimentary carbonates and siliceous rocks were important constituents in their mantle source. Quantitative modeling reveals that the addition of 1–10% subducted sediments into the source of the Hainan basalts closely reproduces their Zn–Sr–Nd–Pb isotopic values. The source component with the heaviest Zn isotopic composition measured for the Hainan basalt samples could have contained more than 9% recycled carbonate. Our findings provide insights into the role of subducted materials to mantle heterogeneity and highlight the contribution of subducted sedimentary carbonates in the deep recycling of oceanic slabs, including—in the case of the Hainan mantle plume—recycled deep mantle (i.e., the mantle transition zone and lower mantle).</p></div>","PeriodicalId":526,"journal":{"name":"Contributions to Mineralogy and Petrology","volume":"179 4","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2024-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deep recycling of crustal materials by the Hainan mantle plume: evidence from Zn–Sr–Nd–Pb isotopes of Hainan Island basalts\",\"authors\":\"Guangyue Cao, Ying Tong, Xianchun Tang, Xiangdong Wang, Xiang Li, Lei Wang\",\"doi\":\"10.1007/s00410-024-02112-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Understanding the compositional heterogeneity of the deep mantle requires identifying the nature of recycled crustal materials in the sources of mantle-plume-related magmas. However, it is still unclear whether or not the deep mantle contains recycled carbonates from the Earth’s surface. In this study, we present comprehensive data on whole-rock high-precision zinc isotopes, as well as major- and trace-element geochemistry, and Sr–Nd–Pb isotopes of basalts on Hainan Island to examine the influence of recycled materials (particularly carbonates) on the mantle source heterogeneity of the Hainan mantle plume. The basalts have highly variable δ<sup>66</sup>Zn values ranging from 0.21‰ to 0.42‰. These variable Zn isotopic compositions cannot be accounted for by processes such as post-magmatic alteration and crustal contamination, or by fractional crystallization and partial melting; instead, they reflect mantle heterogeneity. Comparisons of the major- and trace-element compositions (e.g., CaO and TiO<sub>2</sub> contents and Zn/Fe and Fe/Mn ratios), FC3MS and FCKANTMS peridotite and pyroxenite melting parameters, as well as pseudo-ternary projections of the primary Hainan basaltic magmas with experimental data suggest that the primary magmas were partial melts of silica-deficient pyroxenitic lithologies with peridotite residue. The heterogeneous geochemical and lithological compositions of the Hainan basalts indicate that recycled sedimentary carbonates and siliceous rocks were important constituents in their mantle source. Quantitative modeling reveals that the addition of 1–10% subducted sediments into the source of the Hainan basalts closely reproduces their Zn–Sr–Nd–Pb isotopic values. The source component with the heaviest Zn isotopic composition measured for the Hainan basalt samples could have contained more than 9% recycled carbonate. Our findings provide insights into the role of subducted materials to mantle heterogeneity and highlight the contribution of subducted sedimentary carbonates in the deep recycling of oceanic slabs, including—in the case of the Hainan mantle plume—recycled deep mantle (i.e., the mantle transition zone and lower mantle).</p></div>\",\"PeriodicalId\":526,\"journal\":{\"name\":\"Contributions to Mineralogy and Petrology\",\"volume\":\"179 4\",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-03-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Contributions to Mineralogy and Petrology\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00410-024-02112-5\",\"RegionNum\":2,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Contributions to Mineralogy and Petrology","FirstCategoryId":"89","ListUrlMain":"https://link.springer.com/article/10.1007/s00410-024-02112-5","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
Deep recycling of crustal materials by the Hainan mantle plume: evidence from Zn–Sr–Nd–Pb isotopes of Hainan Island basalts
Understanding the compositional heterogeneity of the deep mantle requires identifying the nature of recycled crustal materials in the sources of mantle-plume-related magmas. However, it is still unclear whether or not the deep mantle contains recycled carbonates from the Earth’s surface. In this study, we present comprehensive data on whole-rock high-precision zinc isotopes, as well as major- and trace-element geochemistry, and Sr–Nd–Pb isotopes of basalts on Hainan Island to examine the influence of recycled materials (particularly carbonates) on the mantle source heterogeneity of the Hainan mantle plume. The basalts have highly variable δ66Zn values ranging from 0.21‰ to 0.42‰. These variable Zn isotopic compositions cannot be accounted for by processes such as post-magmatic alteration and crustal contamination, or by fractional crystallization and partial melting; instead, they reflect mantle heterogeneity. Comparisons of the major- and trace-element compositions (e.g., CaO and TiO2 contents and Zn/Fe and Fe/Mn ratios), FC3MS and FCKANTMS peridotite and pyroxenite melting parameters, as well as pseudo-ternary projections of the primary Hainan basaltic magmas with experimental data suggest that the primary magmas were partial melts of silica-deficient pyroxenitic lithologies with peridotite residue. The heterogeneous geochemical and lithological compositions of the Hainan basalts indicate that recycled sedimentary carbonates and siliceous rocks were important constituents in their mantle source. Quantitative modeling reveals that the addition of 1–10% subducted sediments into the source of the Hainan basalts closely reproduces their Zn–Sr–Nd–Pb isotopic values. The source component with the heaviest Zn isotopic composition measured for the Hainan basalt samples could have contained more than 9% recycled carbonate. Our findings provide insights into the role of subducted materials to mantle heterogeneity and highlight the contribution of subducted sedimentary carbonates in the deep recycling of oceanic slabs, including—in the case of the Hainan mantle plume—recycled deep mantle (i.e., the mantle transition zone and lower mantle).
期刊介绍:
Contributions to Mineralogy and Petrology is an international journal that accepts high quality research papers in the fields of igneous and metamorphic petrology, geochemistry and mineralogy.
Topics of interest include: major element, trace element and isotope geochemistry, geochronology, experimental petrology, igneous and metamorphic petrology, mineralogy, major and trace element mineral chemistry and thermodynamic modeling of petrologic and geochemical processes.