Soojin Hwang, Daehyeon Baek, Jongse Park, Jaehyuk Huh
{"title":"Cerberus:稀疏矩阵和矢量乘法的三重模式加速","authors":"Soojin Hwang, Daehyeon Baek, Jongse Park, Jaehyuk Huh","doi":"10.1145/3653020","DOIUrl":null,"url":null,"abstract":"<p>The multiplication of sparse matrix and vector (SpMV) is one of the most widely used kernels in high-performance computing as well as machine learning acceleration for sparse neural networks. The design space of SpMV accelerators has two axes: algorithm and matrix representation. There have been two widely used algorithms and data representations. Two algorithms, scalar multiplication and dot product, can be combined with two sparse data representations, compressed sparse and bitmap formats for the matrix and vector. Although the prior accelerators adopted one of the possible designs, it is yet to be investigated which design is the best one across different hardware resources and workload characteristics. This paper first investigates the impact of design choices with respect to the algorithm and data representation. Our evaluation shows that no single design always outperforms the others across different workloads, but the two best designs (i.e. compressed sparse format and bitmap format with dot product) have complementary performance with trade-offs incurred by the matrix characteristics. Based on the analysis, this study proposes Cerberus, a triple-mode accelerator supporting two sparse operation modes in addition to the base dense mode. To allow such multi-mode operation, it proposes a prediction model based on matrix characteristics under a given hardware configuration, which statically selects the best mode for a given sparse matrix with its dimension and density information. Our experimental results show that Cerberus provides 12.1 × performance improvements from a dense-only accelerator, and 1.5 × improvements from a fixed best SpMV design.</p>","PeriodicalId":50920,"journal":{"name":"ACM Transactions on Architecture and Code Optimization","volume":"28 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cerberus: Triple Mode Acceleration of Sparse Matrix and Vector Multiplication\",\"authors\":\"Soojin Hwang, Daehyeon Baek, Jongse Park, Jaehyuk Huh\",\"doi\":\"10.1145/3653020\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The multiplication of sparse matrix and vector (SpMV) is one of the most widely used kernels in high-performance computing as well as machine learning acceleration for sparse neural networks. The design space of SpMV accelerators has two axes: algorithm and matrix representation. There have been two widely used algorithms and data representations. Two algorithms, scalar multiplication and dot product, can be combined with two sparse data representations, compressed sparse and bitmap formats for the matrix and vector. Although the prior accelerators adopted one of the possible designs, it is yet to be investigated which design is the best one across different hardware resources and workload characteristics. This paper first investigates the impact of design choices with respect to the algorithm and data representation. Our evaluation shows that no single design always outperforms the others across different workloads, but the two best designs (i.e. compressed sparse format and bitmap format with dot product) have complementary performance with trade-offs incurred by the matrix characteristics. Based on the analysis, this study proposes Cerberus, a triple-mode accelerator supporting two sparse operation modes in addition to the base dense mode. To allow such multi-mode operation, it proposes a prediction model based on matrix characteristics under a given hardware configuration, which statically selects the best mode for a given sparse matrix with its dimension and density information. Our experimental results show that Cerberus provides 12.1 × performance improvements from a dense-only accelerator, and 1.5 × improvements from a fixed best SpMV design.</p>\",\"PeriodicalId\":50920,\"journal\":{\"name\":\"ACM Transactions on Architecture and Code Optimization\",\"volume\":\"28 1\",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-03-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Architecture and Code Optimization\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1145/3653020\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Architecture and Code Optimization","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3653020","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
Cerberus: Triple Mode Acceleration of Sparse Matrix and Vector Multiplication
The multiplication of sparse matrix and vector (SpMV) is one of the most widely used kernels in high-performance computing as well as machine learning acceleration for sparse neural networks. The design space of SpMV accelerators has two axes: algorithm and matrix representation. There have been two widely used algorithms and data representations. Two algorithms, scalar multiplication and dot product, can be combined with two sparse data representations, compressed sparse and bitmap formats for the matrix and vector. Although the prior accelerators adopted one of the possible designs, it is yet to be investigated which design is the best one across different hardware resources and workload characteristics. This paper first investigates the impact of design choices with respect to the algorithm and data representation. Our evaluation shows that no single design always outperforms the others across different workloads, but the two best designs (i.e. compressed sparse format and bitmap format with dot product) have complementary performance with trade-offs incurred by the matrix characteristics. Based on the analysis, this study proposes Cerberus, a triple-mode accelerator supporting two sparse operation modes in addition to the base dense mode. To allow such multi-mode operation, it proposes a prediction model based on matrix characteristics under a given hardware configuration, which statically selects the best mode for a given sparse matrix with its dimension and density information. Our experimental results show that Cerberus provides 12.1 × performance improvements from a dense-only accelerator, and 1.5 × improvements from a fixed best SpMV design.
期刊介绍:
ACM Transactions on Architecture and Code Optimization (TACO) focuses on hardware, software, and system research spanning the fields of computer architecture and code optimization. Articles that appear in TACO will either present new techniques and concepts or report on experiences and experiments with actual systems. Insights useful to architects, hardware or software developers, designers, builders, and users will be emphasized.