半线上奇异强非线性整微分 BVP 的存在性结果

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Francesca Anceschi
{"title":"半线上奇异强非线性整微分 BVP 的存在性结果","authors":"Francesca Anceschi","doi":"10.1007/s11784-024-01097-9","DOIUrl":null,"url":null,"abstract":"<p>This work is devoted to the study of singular strongly non-linear integro-differential equations of the type </p><span>$$\\begin{aligned} (\\Phi (k(t)v'(t)))'=f\\left( t,\\int _0^t v(s)\\, \\textrm{d}s,v(t),v'(t) \\right) , \\text{ a.e. } \\text{ on } {\\mathbb {R}}^{+}_0 := [0, + \\infty [, \\end{aligned}$$</span><p>where <i>f</i> is a Carathéodory function, <span>\\(\\Phi \\)</span> is a strictly increasing homeomorphism, and <i>k</i> is a non-negative integrable function, which is allowed to vanish on a set of zero Lebesgue measure, such that <span>\\(1/k \\in L^p_\\textrm{loc}({\\mathbb {R}}^{+}_0)\\)</span> for a certain <span>\\(p&gt;1\\)</span>. By considering a suitable set of assumptions, including a Nagumo–Wintner growth condition, we prove existence and non-existence results for boundary value problems associated with the non-linear integro-differential equation of our interest in the sub-critical regime on the real half line.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Existence results for singular strongly non-linear integro-differential BVPs on the half line\",\"authors\":\"Francesca Anceschi\",\"doi\":\"10.1007/s11784-024-01097-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This work is devoted to the study of singular strongly non-linear integro-differential equations of the type </p><span>$$\\\\begin{aligned} (\\\\Phi (k(t)v'(t)))'=f\\\\left( t,\\\\int _0^t v(s)\\\\, \\\\textrm{d}s,v(t),v'(t) \\\\right) , \\\\text{ a.e. } \\\\text{ on } {\\\\mathbb {R}}^{+}_0 := [0, + \\\\infty [, \\\\end{aligned}$$</span><p>where <i>f</i> is a Carathéodory function, <span>\\\\(\\\\Phi \\\\)</span> is a strictly increasing homeomorphism, and <i>k</i> is a non-negative integrable function, which is allowed to vanish on a set of zero Lebesgue measure, such that <span>\\\\(1/k \\\\in L^p_\\\\textrm{loc}({\\\\mathbb {R}}^{+}_0)\\\\)</span> for a certain <span>\\\\(p&gt;1\\\\)</span>. By considering a suitable set of assumptions, including a Nagumo–Wintner growth condition, we prove existence and non-existence results for boundary value problems associated with the non-linear integro-differential equation of our interest in the sub-critical regime on the real half line.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-03-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s11784-024-01097-9\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11784-024-01097-9","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

This work is devoted to study of singular strongly non-linear integro-differential equations of the type $$\begin{aligned} (\Phi (k(t)v'(t)))'=f\left( t,\int _0^t v(s)\, \textrm{d}s,v(t),v'(t) \right) ,\text{ a.e. }.\on }{mathbb {R}}^{+}_0 := [0, + \infty [, \end{aligned}$$其中 f 是一个 Carathéodory 函数,\(\Phi \)是一个严格递增的同构,k 是一个非负的可积分函数、允许它在一个零 Lebesgue 度量的集合上消失,这样 \(1/k \in L^p_textrm{loc}({\mathbb {R}}^{+}_0)\) for a certain \(p>;1\).通过考虑一组合适的假设,包括纳古莫-温特纳增长条件,我们证明了与我们感兴趣的实半线上亚临界体制中的非线性积分微分方程相关的边界值问题的存在与不存在结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Existence results for singular strongly non-linear integro-differential BVPs on the half line

This work is devoted to the study of singular strongly non-linear integro-differential equations of the type

$$\begin{aligned} (\Phi (k(t)v'(t)))'=f\left( t,\int _0^t v(s)\, \textrm{d}s,v(t),v'(t) \right) , \text{ a.e. } \text{ on } {\mathbb {R}}^{+}_0 := [0, + \infty [, \end{aligned}$$

where f is a Carathéodory function, \(\Phi \) is a strictly increasing homeomorphism, and k is a non-negative integrable function, which is allowed to vanish on a set of zero Lebesgue measure, such that \(1/k \in L^p_\textrm{loc}({\mathbb {R}}^{+}_0)\) for a certain \(p>1\). By considering a suitable set of assumptions, including a Nagumo–Wintner growth condition, we prove existence and non-existence results for boundary value problems associated with the non-linear integro-differential equation of our interest in the sub-critical regime on the real half line.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信