Shan Li, Wei Huang, Yangjun Zhou, Xin Lu, Zhiyang Yao
{"title":"考虑气象因素数据的配电变压器负荷实时预警方法","authors":"Shan Li, Wei Huang, Yangjun Zhou, Xin Lu, Zhiyang Yao","doi":"10.1142/s0218126624502244","DOIUrl":null,"url":null,"abstract":"<p>The traditional real-time load warning method for distribution transformers has problems such as low recall rate, low warning accuracy, and long warning time, which may lead to potential equipment failures or overload situations not being detected and dealt with in a timely manner, increasing the safety risk of transformer operation and potentially causing safety issues such as equipment damage, fire, or power outage. Therefore, a real-time early warning method of distribution transformer load considering meteorological factor data is designed. The meteorological factor data are collected by the light sensor, humidity sensor, temperature sensor and rainfall sensor, and the load data collection architecture is built by the load monitor, central master station and maintenance station to realize the load data collection of the distribution transformer. The K-nearest neighbor (KNN) method is used to process the missing values of the data, and the LOF algorithm is used to determine the local outliers and eliminate the outliers in the data set to achieve data cleaning. Considering the load loss, hot spot temperature and meteorological factors of the distribution transformer, an early warning model is built, and the cleaned data are input into the model to realize Real-time early warning of the distribution transformer load. The experimental results show that the recall rate of this method varies from 95% to 97%, the accuracy rate of early warning is always above 94%, and the maximum value of early warning time is 0.63s. Having good early warning ability.</p>","PeriodicalId":54866,"journal":{"name":"Journal of Circuits Systems and Computers","volume":"67 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2024-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Real-Time Early Warning Method of Distribution Transformer Load Considering Meteorological Factor Data\",\"authors\":\"Shan Li, Wei Huang, Yangjun Zhou, Xin Lu, Zhiyang Yao\",\"doi\":\"10.1142/s0218126624502244\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The traditional real-time load warning method for distribution transformers has problems such as low recall rate, low warning accuracy, and long warning time, which may lead to potential equipment failures or overload situations not being detected and dealt with in a timely manner, increasing the safety risk of transformer operation and potentially causing safety issues such as equipment damage, fire, or power outage. Therefore, a real-time early warning method of distribution transformer load considering meteorological factor data is designed. The meteorological factor data are collected by the light sensor, humidity sensor, temperature sensor and rainfall sensor, and the load data collection architecture is built by the load monitor, central master station and maintenance station to realize the load data collection of the distribution transformer. The K-nearest neighbor (KNN) method is used to process the missing values of the data, and the LOF algorithm is used to determine the local outliers and eliminate the outliers in the data set to achieve data cleaning. Considering the load loss, hot spot temperature and meteorological factors of the distribution transformer, an early warning model is built, and the cleaned data are input into the model to realize Real-time early warning of the distribution transformer load. The experimental results show that the recall rate of this method varies from 95% to 97%, the accuracy rate of early warning is always above 94%, and the maximum value of early warning time is 0.63s. Having good early warning ability.</p>\",\"PeriodicalId\":54866,\"journal\":{\"name\":\"Journal of Circuits Systems and Computers\",\"volume\":\"67 1\",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-03-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Circuits Systems and Computers\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1142/s0218126624502244\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Circuits Systems and Computers","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1142/s0218126624502244","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
Real-Time Early Warning Method of Distribution Transformer Load Considering Meteorological Factor Data
The traditional real-time load warning method for distribution transformers has problems such as low recall rate, low warning accuracy, and long warning time, which may lead to potential equipment failures or overload situations not being detected and dealt with in a timely manner, increasing the safety risk of transformer operation and potentially causing safety issues such as equipment damage, fire, or power outage. Therefore, a real-time early warning method of distribution transformer load considering meteorological factor data is designed. The meteorological factor data are collected by the light sensor, humidity sensor, temperature sensor and rainfall sensor, and the load data collection architecture is built by the load monitor, central master station and maintenance station to realize the load data collection of the distribution transformer. The K-nearest neighbor (KNN) method is used to process the missing values of the data, and the LOF algorithm is used to determine the local outliers and eliminate the outliers in the data set to achieve data cleaning. Considering the load loss, hot spot temperature and meteorological factors of the distribution transformer, an early warning model is built, and the cleaned data are input into the model to realize Real-time early warning of the distribution transformer load. The experimental results show that the recall rate of this method varies from 95% to 97%, the accuracy rate of early warning is always above 94%, and the maximum value of early warning time is 0.63s. Having good early warning ability.
期刊介绍:
Journal of Circuits, Systems, and Computers covers a wide scope, ranging from mathematical foundations to practical engineering design in the general areas of circuits, systems, and computers with focus on their circuit aspects. Although primary emphasis will be on research papers, survey, expository and tutorial papers are also welcome. The journal consists of two sections:
Papers - Contributions in this section may be of a research or tutorial nature. Research papers must be original and must not duplicate descriptions or derivations available elsewhere. The author should limit paper length whenever this can be done without impairing quality.
Letters - This section provides a vehicle for speedy publication of new results and information of current interest in circuits, systems, and computers. Focus will be directed to practical design- and applications-oriented contributions, but publication in this section will not be restricted to this material. These letters are to concentrate on reporting the results obtained, their significance and the conclusions, while including only the minimum of supporting details required to understand the contribution. Publication of a manuscript in this manner does not preclude a later publication with a fully developed version.