考虑气象因素数据的配电变压器负荷实时预警方法

IF 0.9 4区 工程技术 Q4 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE
Shan Li, Wei Huang, Yangjun Zhou, Xin Lu, Zhiyang Yao
{"title":"考虑气象因素数据的配电变压器负荷实时预警方法","authors":"Shan Li, Wei Huang, Yangjun Zhou, Xin Lu, Zhiyang Yao","doi":"10.1142/s0218126624502244","DOIUrl":null,"url":null,"abstract":"<p>The traditional real-time load warning method for distribution transformers has problems such as low recall rate, low warning accuracy, and long warning time, which may lead to potential equipment failures or overload situations not being detected and dealt with in a timely manner, increasing the safety risk of transformer operation and potentially causing safety issues such as equipment damage, fire, or power outage. Therefore, a real-time early warning method of distribution transformer load considering meteorological factor data is designed. The meteorological factor data are collected by the light sensor, humidity sensor, temperature sensor and rainfall sensor, and the load data collection architecture is built by the load monitor, central master station and maintenance station to realize the load data collection of the distribution transformer. The K-nearest neighbor (KNN) method is used to process the missing values of the data, and the LOF algorithm is used to determine the local outliers and eliminate the outliers in the data set to achieve data cleaning. Considering the load loss, hot spot temperature and meteorological factors of the distribution transformer, an early warning model is built, and the cleaned data are input into the model to realize Real-time early warning of the distribution transformer load. The experimental results show that the recall rate of this method varies from 95% to 97%, the accuracy rate of early warning is always above 94%, and the maximum value of early warning time is 0.63s. Having good early warning ability.</p>","PeriodicalId":54866,"journal":{"name":"Journal of Circuits Systems and Computers","volume":"67 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2024-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Real-Time Early Warning Method of Distribution Transformer Load Considering Meteorological Factor Data\",\"authors\":\"Shan Li, Wei Huang, Yangjun Zhou, Xin Lu, Zhiyang Yao\",\"doi\":\"10.1142/s0218126624502244\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The traditional real-time load warning method for distribution transformers has problems such as low recall rate, low warning accuracy, and long warning time, which may lead to potential equipment failures or overload situations not being detected and dealt with in a timely manner, increasing the safety risk of transformer operation and potentially causing safety issues such as equipment damage, fire, or power outage. Therefore, a real-time early warning method of distribution transformer load considering meteorological factor data is designed. The meteorological factor data are collected by the light sensor, humidity sensor, temperature sensor and rainfall sensor, and the load data collection architecture is built by the load monitor, central master station and maintenance station to realize the load data collection of the distribution transformer. The K-nearest neighbor (KNN) method is used to process the missing values of the data, and the LOF algorithm is used to determine the local outliers and eliminate the outliers in the data set to achieve data cleaning. Considering the load loss, hot spot temperature and meteorological factors of the distribution transformer, an early warning model is built, and the cleaned data are input into the model to realize Real-time early warning of the distribution transformer load. The experimental results show that the recall rate of this method varies from 95% to 97%, the accuracy rate of early warning is always above 94%, and the maximum value of early warning time is 0.63s. Having good early warning ability.</p>\",\"PeriodicalId\":54866,\"journal\":{\"name\":\"Journal of Circuits Systems and Computers\",\"volume\":\"67 1\",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-03-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Circuits Systems and Computers\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1142/s0218126624502244\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Circuits Systems and Computers","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1142/s0218126624502244","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

摘要

传统的配电变压器负荷实时预警方法存在召回率低、预警精度低、预警时间长等问题,可能导致潜在的设备故障或过载情况不能被及时发现和处理,增加了变压器运行的安全风险,有可能造成设备损坏、火灾或停电等安全问题。因此,设计了一种考虑气象因素数据的配电变压器负荷实时预警方法。通过光照传感器、湿度传感器、温度传感器和雨量传感器采集气象因子数据,通过负荷监测器、中心主站和维护站构建负荷数据采集架构,实现配电变压器的负荷数据采集。采用 K-nearest neighbor(KNN)方法处理数据缺失值,利用 LOF 算法判断局部异常值,消除数据集中的异常值,实现数据清洗。考虑配电变压器的负载损耗、热点温度和气象因素,建立预警模型,并将清洗后的数据输入模型,实现配电变压器负载的实时预警。实验结果表明,该方法的召回率在 95% 至 97% 之间,预警准确率始终保持在 94% 以上,预警时间最大值为 0.63s。具有良好的预警能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Real-Time Early Warning Method of Distribution Transformer Load Considering Meteorological Factor Data

The traditional real-time load warning method for distribution transformers has problems such as low recall rate, low warning accuracy, and long warning time, which may lead to potential equipment failures or overload situations not being detected and dealt with in a timely manner, increasing the safety risk of transformer operation and potentially causing safety issues such as equipment damage, fire, or power outage. Therefore, a real-time early warning method of distribution transformer load considering meteorological factor data is designed. The meteorological factor data are collected by the light sensor, humidity sensor, temperature sensor and rainfall sensor, and the load data collection architecture is built by the load monitor, central master station and maintenance station to realize the load data collection of the distribution transformer. The K-nearest neighbor (KNN) method is used to process the missing values of the data, and the LOF algorithm is used to determine the local outliers and eliminate the outliers in the data set to achieve data cleaning. Considering the load loss, hot spot temperature and meteorological factors of the distribution transformer, an early warning model is built, and the cleaned data are input into the model to realize Real-time early warning of the distribution transformer load. The experimental results show that the recall rate of this method varies from 95% to 97%, the accuracy rate of early warning is always above 94%, and the maximum value of early warning time is 0.63s. Having good early warning ability.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Circuits Systems and Computers
Journal of Circuits Systems and Computers 工程技术-工程:电子与电气
CiteScore
2.80
自引率
26.70%
发文量
350
审稿时长
5.4 months
期刊介绍: Journal of Circuits, Systems, and Computers covers a wide scope, ranging from mathematical foundations to practical engineering design in the general areas of circuits, systems, and computers with focus on their circuit aspects. Although primary emphasis will be on research papers, survey, expository and tutorial papers are also welcome. The journal consists of two sections: Papers - Contributions in this section may be of a research or tutorial nature. Research papers must be original and must not duplicate descriptions or derivations available elsewhere. The author should limit paper length whenever this can be done without impairing quality. Letters - This section provides a vehicle for speedy publication of new results and information of current interest in circuits, systems, and computers. Focus will be directed to practical design- and applications-oriented contributions, but publication in this section will not be restricted to this material. These letters are to concentrate on reporting the results obtained, their significance and the conclusions, while including only the minimum of supporting details required to understand the contribution. Publication of a manuscript in this manner does not preclude a later publication with a fully developed version.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信