Chang Jian Liu, Jaume Llibre, Rafael Ramírez, Valentín Ramírez
{"title":"一类多项式微分方程系统的中心问题求解","authors":"Chang Jian Liu, Jaume Llibre, Rafael Ramírez, Valentín Ramírez","doi":"10.1007/s10114-024-0578-y","DOIUrl":null,"url":null,"abstract":"<div><p>Consider the polynomial differential system of degree <i>m</i> of the form </p><div><div><span>$$\\eqalign{&\\dot{x}=-y(1+\\mu(a_{2}x-a_{1}y))+x(\\nu(a_{1}x+a_{2}y)+\\Omega_{m-1}(x,y)),\\cr &\\dot{y}=x(1+\\mu(a_{2}x-a_{1}y))+y(\\nu(a_{1}x+a_{2}y)+\\Omega_{m-1}(x,y)),}$$</span></div></div><p> where <i>μ</i> and <i>ν</i> are real numbers such that <span>\\((\\mu^{2}+\\nu^{2})(\\mu+\\nu(m-2))(a_{1}^{2}+a_{2}^{2})\\ne 0,m > 2\\)</span> and Ω<sub><i>m</i>−1</sub>(<i>x</i>,<i>y</i>) is a homogenous polynomial of degree <i>m</i> − 1. A conjecture, stated in <i>J. Differential Equations</i> 2019, suggests that when <i>ν</i> = 1, this differential system has a weak center at the origin if and only if after a convenient linear change of variable (<i>x</i>,<i>y</i>) → (<i>X</i>,<i>Y</i>) the system is invariant under the transformation (<i>X</i>,<i>Y</i>,<i>t</i>) → (−<i>X</i>,<i>Y</i>, −<i>t</i>). For every degree <i>m</i> we prove the extension of this conjecture to any value of <i>ν</i> except for a finite set of values of <i>μ</i>.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Solution of the Center Problem for a Class of Polynomial Differential Systems\",\"authors\":\"Chang Jian Liu, Jaume Llibre, Rafael Ramírez, Valentín Ramírez\",\"doi\":\"10.1007/s10114-024-0578-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Consider the polynomial differential system of degree <i>m</i> of the form </p><div><div><span>$$\\\\eqalign{&\\\\dot{x}=-y(1+\\\\mu(a_{2}x-a_{1}y))+x(\\\\nu(a_{1}x+a_{2}y)+\\\\Omega_{m-1}(x,y)),\\\\cr &\\\\dot{y}=x(1+\\\\mu(a_{2}x-a_{1}y))+y(\\\\nu(a_{1}x+a_{2}y)+\\\\Omega_{m-1}(x,y)),}$$</span></div></div><p> where <i>μ</i> and <i>ν</i> are real numbers such that <span>\\\\((\\\\mu^{2}+\\\\nu^{2})(\\\\mu+\\\\nu(m-2))(a_{1}^{2}+a_{2}^{2})\\\\ne 0,m > 2\\\\)</span> and Ω<sub><i>m</i>−1</sub>(<i>x</i>,<i>y</i>) is a homogenous polynomial of degree <i>m</i> − 1. A conjecture, stated in <i>J. Differential Equations</i> 2019, suggests that when <i>ν</i> = 1, this differential system has a weak center at the origin if and only if after a convenient linear change of variable (<i>x</i>,<i>y</i>) → (<i>X</i>,<i>Y</i>) the system is invariant under the transformation (<i>X</i>,<i>Y</i>,<i>t</i>) → (−<i>X</i>,<i>Y</i>, −<i>t</i>). For every degree <i>m</i> we prove the extension of this conjecture to any value of <i>ν</i> except for a finite set of values of <i>μ</i>.</p></div>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-03-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10114-024-0578-y\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s10114-024-0578-y","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
where μ and ν are real numbers such that \((\mu^{2}+\nu^{2})(\mu+\nu(m-2))(a_{1}^{2}+a_{2}^{2})\ne 0,m > 2\) and Ωm−1(x,y) is a homogenous polynomial of degree m − 1. A conjecture, stated in J. Differential Equations 2019, suggests that when ν = 1, this differential system has a weak center at the origin if and only if after a convenient linear change of variable (x,y) → (X,Y) the system is invariant under the transformation (X,Y,t) → (−X,Y, −t). For every degree m we prove the extension of this conjecture to any value of ν except for a finite set of values of μ.