利用多孔氮化硼吸附低浓度镉(II)和镍(II)的新研究:有效性、共存阴离子干扰和再生

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Fei Han, Mingyao Zhao, Xun Ding
{"title":"利用多孔氮化硼吸附低浓度镉(II)和镍(II)的新研究:有效性、共存阴离子干扰和再生","authors":"Fei Han, Mingyao Zhao, Xun Ding","doi":"10.1007/s43153-024-00451-1","DOIUrl":null,"url":null,"abstract":"<p>The difficulty of removing low-concentration heavy metals from wastewater and the impact of coexisting anions on adsorption and regeneration performance has been widely recognized. To address this challenge, we synthesized a new adsorbent called porous boron nitride (PBN) and characterized it with X-ray diffraction, scanning electron microscopy, Fourier transform infrared spectroscopy, and nitrogen isothermal adsorption–desorption isotherms. Then, the adsorption kinetics and equilibrium models of PBN for Cd(II) and Ni(II) with a concentration as low as 10 mg/L, along with the impact of anions on adsorption performance and the regeneration of PBN, were investigated. The findings indicated that PBN achieved adsorption equilibrium for Cd(II) and Ni(II) in just 5 min. Furthermore, the adsorption processes fit better with the pseudo-second order kinetic model and the Freundlich isothermal model. Especially, we found that the presence of SO<sub>4</sub><sup>2−</sup> inhibited the adsorption of Cd(II) and Ni(II), whereas SiO<sub>3</sub><sup>2−</sup>, CO<sub>3</sub><sup>2−</sup>, and PO<sub>4</sub><sup>3−</sup> promoted adsorption by forming a PBN-anion-metal ternary complex. We determined that the adsorption mechanism involved electrostatic attraction and chemisorption. After regeneration, PBN retained its crystal structure and typical pore distribution, demonstrating excellent adsorption performance for heavy metals.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A novel study on the adsorption of low concentration Cd(II) and Ni(II) using porous boron nitride: effectiveness, coexisting anion interference, and regeneration\",\"authors\":\"Fei Han, Mingyao Zhao, Xun Ding\",\"doi\":\"10.1007/s43153-024-00451-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The difficulty of removing low-concentration heavy metals from wastewater and the impact of coexisting anions on adsorption and regeneration performance has been widely recognized. To address this challenge, we synthesized a new adsorbent called porous boron nitride (PBN) and characterized it with X-ray diffraction, scanning electron microscopy, Fourier transform infrared spectroscopy, and nitrogen isothermal adsorption–desorption isotherms. Then, the adsorption kinetics and equilibrium models of PBN for Cd(II) and Ni(II) with a concentration as low as 10 mg/L, along with the impact of anions on adsorption performance and the regeneration of PBN, were investigated. The findings indicated that PBN achieved adsorption equilibrium for Cd(II) and Ni(II) in just 5 min. Furthermore, the adsorption processes fit better with the pseudo-second order kinetic model and the Freundlich isothermal model. Especially, we found that the presence of SO<sub>4</sub><sup>2−</sup> inhibited the adsorption of Cd(II) and Ni(II), whereas SiO<sub>3</sub><sup>2−</sup>, CO<sub>3</sub><sup>2−</sup>, and PO<sub>4</sub><sup>3−</sup> promoted adsorption by forming a PBN-anion-metal ternary complex. We determined that the adsorption mechanism involved electrostatic attraction and chemisorption. After regeneration, PBN retained its crystal structure and typical pore distribution, demonstrating excellent adsorption performance for heavy metals.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-03-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s43153-024-00451-1\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s43153-024-00451-1","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

从废水中去除低浓度重金属的难度以及共存阴离子对吸附和再生性能的影响已得到广泛认可。针对这一难题,我们合成了一种名为多孔氮化硼(PBN)的新型吸附剂,并利用 X 射线衍射、扫描电子显微镜、傅立叶变换红外光谱和氮等温吸附-解吸等温线对其进行了表征。然后,研究了 PBN 对浓度低至 10 mg/L 的镉(II)和镍(II)的吸附动力学和平衡模型,以及阴离子对吸附性能和 PBN 再生的影响。研究结果表明,PBN 只需 5 分钟就能达到对 Cd(II) 和 Ni(II) 的吸附平衡。此外,吸附过程更符合伪二阶动力学模型和 Freundlich 等温模型。特别是,我们发现 SO42- 的存在抑制了 Cd(II) 和 Ni(II) 的吸附,而 SiO32-、CO32- 和 PO43- 则通过形成 PBN-阴离子-金属三元复合物促进了吸附。我们确定吸附机制涉及静电吸引和化学吸附。再生后,PBN 保留了其晶体结构和典型的孔隙分布,对重金属具有优异的吸附性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

A novel study on the adsorption of low concentration Cd(II) and Ni(II) using porous boron nitride: effectiveness, coexisting anion interference, and regeneration

A novel study on the adsorption of low concentration Cd(II) and Ni(II) using porous boron nitride: effectiveness, coexisting anion interference, and regeneration

The difficulty of removing low-concentration heavy metals from wastewater and the impact of coexisting anions on adsorption and regeneration performance has been widely recognized. To address this challenge, we synthesized a new adsorbent called porous boron nitride (PBN) and characterized it with X-ray diffraction, scanning electron microscopy, Fourier transform infrared spectroscopy, and nitrogen isothermal adsorption–desorption isotherms. Then, the adsorption kinetics and equilibrium models of PBN for Cd(II) and Ni(II) with a concentration as low as 10 mg/L, along with the impact of anions on adsorption performance and the regeneration of PBN, were investigated. The findings indicated that PBN achieved adsorption equilibrium for Cd(II) and Ni(II) in just 5 min. Furthermore, the adsorption processes fit better with the pseudo-second order kinetic model and the Freundlich isothermal model. Especially, we found that the presence of SO42− inhibited the adsorption of Cd(II) and Ni(II), whereas SiO32−, CO32−, and PO43− promoted adsorption by forming a PBN-anion-metal ternary complex. We determined that the adsorption mechanism involved electrostatic attraction and chemisorption. After regeneration, PBN retained its crystal structure and typical pore distribution, demonstrating excellent adsorption performance for heavy metals.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信