A. Ogunkeye , R. Hudson-Kershaw , A.R. Davies , D.J. Curtis
{"title":"平行和正交叠加流变仪中的戈登-肖瓦尔特/约翰逊-西格曼模型及其在蠕虫状微细胞系统研究中的应用","authors":"A. Ogunkeye , R. Hudson-Kershaw , A.R. Davies , D.J. Curtis","doi":"10.1016/j.jnnfm.2024.105216","DOIUrl":null,"url":null,"abstract":"<div><p>Parallel and Orthogonal Superposition experiments may be employed to probe a material’s non-linear rheological properties through the rate-dependent parallel and orthogonal superposition moduli, <span><math><mrow><msubsup><mrow><mi>G</mi></mrow><mrow><mo>∥</mo></mrow><mrow><mo>∗</mo></mrow></msubsup><mrow><mo>(</mo><mi>ω</mi><mo>,</mo><mover><mrow><mi>γ</mi></mrow><mrow><mo>̇</mo></mrow></mover><mo>)</mo></mrow></mrow></math></span> and <span><math><mrow><msubsup><mrow><mi>G</mi></mrow><mrow><mo>⊥</mo></mrow><mrow><mo>∗</mo></mrow></msubsup><mrow><mo>(</mo><mi>ω</mi><mo>,</mo><mover><mrow><mi>γ</mi></mrow><mrow><mo>̇</mo></mrow></mover><mo>)</mo></mrow></mrow></math></span>, respectively. In a recent series of publications, we have considered the problem of interconversion between parallel and orthogonal superposition moduli as a means of probing flow induced anisotropy. However, as noted by Yamomoto (1971) superposition flows may be used to assess the ability of a particular constitutive model to describe the flow of complex fluids. Herein, we derive expressions for the superposition moduli of the Gordon–Schowalter (or Johnson–Segalman) fluid. This model contains, as special cases, the corotational Maxwell model, the upper (and lower) convected Maxwell models, the corotational Jeffreys model, and the Oldroyd-B model. We also consider the conditions under which the superposition moduli may take negative values before studying a specific, non shear banding, worm like micellular system of cetylpyridinium chloride and sodium salicylate. We find that, using a weakly non-linear analysis (in which the model parameters are rate independent) the Gordon–Schowalter/Johnson–Segalman (GS/JS) model is unable to describe the superposition moduli. However, by permitting strong non-linearity (allowing the GS/JS parameters to become shear rate dependent), the superposition moduli, at all rates studied, are described well by the model. Based on this strongly non-linear analysis, the shear rate dependency of the GS/JS ‘slip parameter’, <span><math><mi>a</mi></math></span>, suggests that the onset of shear thinning in the specific worm-like micellular system studied herein is driven by a combination of microstructural modification and a transition from rotation dominated (as in the corotational Jeffreys model) to shear dominated (as in the Oldroyd-B model) deformation of the microstructural elements.</p></div>","PeriodicalId":54782,"journal":{"name":"Journal of Non-Newtonian Fluid Mechanics","volume":"327 ","pages":"Article 105216"},"PeriodicalIF":2.7000,"publicationDate":"2024-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0377025724000326/pdfft?md5=491ce2b20f5bb3135964d392180acc0f&pid=1-s2.0-S0377025724000326-main.pdf","citationCount":"0","resultStr":"{\"title\":\"The Gordon–Schowalter/Johnson–Segalman model in parallel and orthogonal superposition rheometry and its application in the study of worm-like micellular systems\",\"authors\":\"A. Ogunkeye , R. Hudson-Kershaw , A.R. Davies , D.J. Curtis\",\"doi\":\"10.1016/j.jnnfm.2024.105216\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Parallel and Orthogonal Superposition experiments may be employed to probe a material’s non-linear rheological properties through the rate-dependent parallel and orthogonal superposition moduli, <span><math><mrow><msubsup><mrow><mi>G</mi></mrow><mrow><mo>∥</mo></mrow><mrow><mo>∗</mo></mrow></msubsup><mrow><mo>(</mo><mi>ω</mi><mo>,</mo><mover><mrow><mi>γ</mi></mrow><mrow><mo>̇</mo></mrow></mover><mo>)</mo></mrow></mrow></math></span> and <span><math><mrow><msubsup><mrow><mi>G</mi></mrow><mrow><mo>⊥</mo></mrow><mrow><mo>∗</mo></mrow></msubsup><mrow><mo>(</mo><mi>ω</mi><mo>,</mo><mover><mrow><mi>γ</mi></mrow><mrow><mo>̇</mo></mrow></mover><mo>)</mo></mrow></mrow></math></span>, respectively. In a recent series of publications, we have considered the problem of interconversion between parallel and orthogonal superposition moduli as a means of probing flow induced anisotropy. However, as noted by Yamomoto (1971) superposition flows may be used to assess the ability of a particular constitutive model to describe the flow of complex fluids. Herein, we derive expressions for the superposition moduli of the Gordon–Schowalter (or Johnson–Segalman) fluid. This model contains, as special cases, the corotational Maxwell model, the upper (and lower) convected Maxwell models, the corotational Jeffreys model, and the Oldroyd-B model. We also consider the conditions under which the superposition moduli may take negative values before studying a specific, non shear banding, worm like micellular system of cetylpyridinium chloride and sodium salicylate. We find that, using a weakly non-linear analysis (in which the model parameters are rate independent) the Gordon–Schowalter/Johnson–Segalman (GS/JS) model is unable to describe the superposition moduli. However, by permitting strong non-linearity (allowing the GS/JS parameters to become shear rate dependent), the superposition moduli, at all rates studied, are described well by the model. Based on this strongly non-linear analysis, the shear rate dependency of the GS/JS ‘slip parameter’, <span><math><mi>a</mi></math></span>, suggests that the onset of shear thinning in the specific worm-like micellular system studied herein is driven by a combination of microstructural modification and a transition from rotation dominated (as in the corotational Jeffreys model) to shear dominated (as in the Oldroyd-B model) deformation of the microstructural elements.</p></div>\",\"PeriodicalId\":54782,\"journal\":{\"name\":\"Journal of Non-Newtonian Fluid Mechanics\",\"volume\":\"327 \",\"pages\":\"Article 105216\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-03-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0377025724000326/pdfft?md5=491ce2b20f5bb3135964d392180acc0f&pid=1-s2.0-S0377025724000326-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Non-Newtonian Fluid Mechanics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0377025724000326\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Non-Newtonian Fluid Mechanics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0377025724000326","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MECHANICS","Score":null,"Total":0}
The Gordon–Schowalter/Johnson–Segalman model in parallel and orthogonal superposition rheometry and its application in the study of worm-like micellular systems
Parallel and Orthogonal Superposition experiments may be employed to probe a material’s non-linear rheological properties through the rate-dependent parallel and orthogonal superposition moduli, and , respectively. In a recent series of publications, we have considered the problem of interconversion between parallel and orthogonal superposition moduli as a means of probing flow induced anisotropy. However, as noted by Yamomoto (1971) superposition flows may be used to assess the ability of a particular constitutive model to describe the flow of complex fluids. Herein, we derive expressions for the superposition moduli of the Gordon–Schowalter (or Johnson–Segalman) fluid. This model contains, as special cases, the corotational Maxwell model, the upper (and lower) convected Maxwell models, the corotational Jeffreys model, and the Oldroyd-B model. We also consider the conditions under which the superposition moduli may take negative values before studying a specific, non shear banding, worm like micellular system of cetylpyridinium chloride and sodium salicylate. We find that, using a weakly non-linear analysis (in which the model parameters are rate independent) the Gordon–Schowalter/Johnson–Segalman (GS/JS) model is unable to describe the superposition moduli. However, by permitting strong non-linearity (allowing the GS/JS parameters to become shear rate dependent), the superposition moduli, at all rates studied, are described well by the model. Based on this strongly non-linear analysis, the shear rate dependency of the GS/JS ‘slip parameter’, , suggests that the onset of shear thinning in the specific worm-like micellular system studied herein is driven by a combination of microstructural modification and a transition from rotation dominated (as in the corotational Jeffreys model) to shear dominated (as in the Oldroyd-B model) deformation of the microstructural elements.
期刊介绍:
The Journal of Non-Newtonian Fluid Mechanics publishes research on flowing soft matter systems. Submissions in all areas of flowing complex fluids are welcomed, including polymer melts and solutions, suspensions, colloids, surfactant solutions, biological fluids, gels, liquid crystals and granular materials. Flow problems relevant to microfluidics, lab-on-a-chip, nanofluidics, biological flows, geophysical flows, industrial processes and other applications are of interest.
Subjects considered suitable for the journal include the following (not necessarily in order of importance):
Theoretical, computational and experimental studies of naturally or technologically relevant flow problems where the non-Newtonian nature of the fluid is important in determining the character of the flow. We seek in particular studies that lend mechanistic insight into flow behavior in complex fluids or highlight flow phenomena unique to complex fluids. Examples include
Instabilities, unsteady and turbulent or chaotic flow characteristics in non-Newtonian fluids,
Multiphase flows involving complex fluids,
Problems involving transport phenomena such as heat and mass transfer and mixing, to the extent that the non-Newtonian flow behavior is central to the transport phenomena,
Novel flow situations that suggest the need for further theoretical study,
Practical situations of flow that are in need of systematic theoretical and experimental research. Such issues and developments commonly arise, for example, in the polymer processing, petroleum, pharmaceutical, biomedical and consumer product industries.