{"title":"用于高光谱异常检测的空间-光谱总变异-细化低张量表示法","authors":"ZhiGuo Du, Xingyu Chen, Minghao Jia, Xiaoying Qiu, Zelong Chen, Kaiming Zhu","doi":"10.1142/s0218126624502165","DOIUrl":null,"url":null,"abstract":"<p>Hyperspectral anomaly detection is a vital aspect of remote sensing as it focuses on identifying pixels with distinct spectral–spatial properties in comparison to their background representations. However, existing methods for anomaly detection in HSIs often overlook the spatial correlation between pixels by converting the three-dimensional tensor data into its folded form of independent signatures, which may lead to insufficient detection performance. To address this limitation, we develop an anomaly detection algorithm from a tensor representation perspective, which begins by separating the observed hyperspectral image into background and anomaly cubes. We leverage the tensor nuclear norm (TNN) to capture the inherent low-rank structure of background cube globally. This allows us to effectively model and represent the background information. To further improve the detection performance, we introduce spatial–spectral total variation (SSTV) for effectively promoting piecewise smoothness of the background tensor, aiding in the identification of anomalies. Additionally, we incorporate RX-derived attention weights-guided <span><math altimg=\"eq-00001.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi>ℓ</mi></mrow><mrow><mn>2</mn><mo>,</mo><mn>1</mn></mrow></msub></math></span><span></span> norm. This encourages group sparsity of anomalous pixels, improving the precision of anomaly detection. To solve our proposed method, we employ the alternating direction method of multipliers (ADMM), ensuring guaranteed convergence and efficient computation. Through experiments on different kinds of hyperspectral real datasets, we have demonstrated that our method surpasses several state-of-the-art detectors.</p>","PeriodicalId":54866,"journal":{"name":"Journal of Circuits Systems and Computers","volume":"77 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2024-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Spatial–Spectral Total Variation-Regularized Low-Rank Tensor Representation for Hyperspectral Anomaly Detection\",\"authors\":\"ZhiGuo Du, Xingyu Chen, Minghao Jia, Xiaoying Qiu, Zelong Chen, Kaiming Zhu\",\"doi\":\"10.1142/s0218126624502165\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Hyperspectral anomaly detection is a vital aspect of remote sensing as it focuses on identifying pixels with distinct spectral–spatial properties in comparison to their background representations. However, existing methods for anomaly detection in HSIs often overlook the spatial correlation between pixels by converting the three-dimensional tensor data into its folded form of independent signatures, which may lead to insufficient detection performance. To address this limitation, we develop an anomaly detection algorithm from a tensor representation perspective, which begins by separating the observed hyperspectral image into background and anomaly cubes. We leverage the tensor nuclear norm (TNN) to capture the inherent low-rank structure of background cube globally. This allows us to effectively model and represent the background information. To further improve the detection performance, we introduce spatial–spectral total variation (SSTV) for effectively promoting piecewise smoothness of the background tensor, aiding in the identification of anomalies. Additionally, we incorporate RX-derived attention weights-guided <span><math altimg=\\\"eq-00001.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><msub><mrow><mi>ℓ</mi></mrow><mrow><mn>2</mn><mo>,</mo><mn>1</mn></mrow></msub></math></span><span></span> norm. This encourages group sparsity of anomalous pixels, improving the precision of anomaly detection. To solve our proposed method, we employ the alternating direction method of multipliers (ADMM), ensuring guaranteed convergence and efficient computation. Through experiments on different kinds of hyperspectral real datasets, we have demonstrated that our method surpasses several state-of-the-art detectors.</p>\",\"PeriodicalId\":54866,\"journal\":{\"name\":\"Journal of Circuits Systems and Computers\",\"volume\":\"77 1\",\"pages\":\"\"},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-02-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Circuits Systems and Computers\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1142/s0218126624502165\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Circuits Systems and Computers","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1142/s0218126624502165","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
Spatial–Spectral Total Variation-Regularized Low-Rank Tensor Representation for Hyperspectral Anomaly Detection
Hyperspectral anomaly detection is a vital aspect of remote sensing as it focuses on identifying pixels with distinct spectral–spatial properties in comparison to their background representations. However, existing methods for anomaly detection in HSIs often overlook the spatial correlation between pixels by converting the three-dimensional tensor data into its folded form of independent signatures, which may lead to insufficient detection performance. To address this limitation, we develop an anomaly detection algorithm from a tensor representation perspective, which begins by separating the observed hyperspectral image into background and anomaly cubes. We leverage the tensor nuclear norm (TNN) to capture the inherent low-rank structure of background cube globally. This allows us to effectively model and represent the background information. To further improve the detection performance, we introduce spatial–spectral total variation (SSTV) for effectively promoting piecewise smoothness of the background tensor, aiding in the identification of anomalies. Additionally, we incorporate RX-derived attention weights-guided norm. This encourages group sparsity of anomalous pixels, improving the precision of anomaly detection. To solve our proposed method, we employ the alternating direction method of multipliers (ADMM), ensuring guaranteed convergence and efficient computation. Through experiments on different kinds of hyperspectral real datasets, we have demonstrated that our method surpasses several state-of-the-art detectors.
期刊介绍:
Journal of Circuits, Systems, and Computers covers a wide scope, ranging from mathematical foundations to practical engineering design in the general areas of circuits, systems, and computers with focus on their circuit aspects. Although primary emphasis will be on research papers, survey, expository and tutorial papers are also welcome. The journal consists of two sections:
Papers - Contributions in this section may be of a research or tutorial nature. Research papers must be original and must not duplicate descriptions or derivations available elsewhere. The author should limit paper length whenever this can be done without impairing quality.
Letters - This section provides a vehicle for speedy publication of new results and information of current interest in circuits, systems, and computers. Focus will be directed to practical design- and applications-oriented contributions, but publication in this section will not be restricted to this material. These letters are to concentrate on reporting the results obtained, their significance and the conclusions, while including only the minimum of supporting details required to understand the contribution. Publication of a manuscript in this manner does not preclude a later publication with a fully developed version.