通过分岔理论求解某些半正交问题的节点解

Pub Date : 2024-03-14 DOI:10.1007/s10986-024-09625-3
Yali Zhang, Ruyun Ma
{"title":"通过分岔理论求解某些半正交问题的节点解","authors":"Yali Zhang, Ruyun Ma","doi":"10.1007/s10986-024-09625-3","DOIUrl":null,"url":null,"abstract":"<p>We show the existence of nodal solutions of the second-order nonlinear boundary value problem </p><span>$$\\begin{array}{l}-{u}^{^{\\prime\\prime} }\\left(x\\right)=\\lambda \\left(g\\left(u\\left(x\\right)\\right)+p\\left(x,u\\left(x\\right),{u}^{\\mathrm{^{\\prime}}}\\left(x\\right)\\right)\\right),x\\in \\left(\\mathrm{0,1}\\right),\\\\ u\\left(0\\right)=u\\left(1\\right)=0,\\end{array} ({\\text{P}})$$</span><p>where <i>λ &gt;</i> 0 is a parameter, <i>p</i> : [0, 1]×ℝ<sup>2</sup> → ℝ and <i>g</i> : ℝ →ℝ are continuous functions, and <i>g</i>(0) = 0. For a nonnegative integer <i>k</i>, we say that a solution is nodal if it has only simple zeros in (0, 1) and has exactly <i>k</i>-1 such zeros. Under some suitable conditions, we obtain that there exists <i>λ</i><sub>∗</sub> &gt; 0 (or <i>λ</i><sup>∗</sup> &gt; 0) such that for fixed <i>k</i> ∈ {1, 2,…}, problem (P) has at least one nodal solution for <i>λ</i> ∈ (<i>k</i><sup>2</sup><i>π</i><sup>2</sup>/<i>g</i><sub>∞</sub>, <i>λ</i><sup>∗</sup>) (or <i>λ</i> ∈ (<i>λ</i><sup>∗</sup>,<i> k</i><sup>2</sup><i>π</i><sup>2</sup>/<i>g</i><sub>∞</sub>)), where <i>g</i><sub>∞</sub> = lim<sub>|<i>s</i>|→∞</sub> <i>g</i>(<i>s</i>)/<i>s</i>. The proof of our main results relies on the bifurcation technique.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nodal solutions for some semipositone problemsvia bifurcation theory\",\"authors\":\"Yali Zhang, Ruyun Ma\",\"doi\":\"10.1007/s10986-024-09625-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We show the existence of nodal solutions of the second-order nonlinear boundary value problem </p><span>$$\\\\begin{array}{l}-{u}^{^{\\\\prime\\\\prime} }\\\\left(x\\\\right)=\\\\lambda \\\\left(g\\\\left(u\\\\left(x\\\\right)\\\\right)+p\\\\left(x,u\\\\left(x\\\\right),{u}^{\\\\mathrm{^{\\\\prime}}}\\\\left(x\\\\right)\\\\right)\\\\right),x\\\\in \\\\left(\\\\mathrm{0,1}\\\\right),\\\\\\\\ u\\\\left(0\\\\right)=u\\\\left(1\\\\right)=0,\\\\end{array} ({\\\\text{P}})$$</span><p>where <i>λ &gt;</i> 0 is a parameter, <i>p</i> : [0, 1]×ℝ<sup>2</sup> → ℝ and <i>g</i> : ℝ →ℝ are continuous functions, and <i>g</i>(0) = 0. For a nonnegative integer <i>k</i>, we say that a solution is nodal if it has only simple zeros in (0, 1) and has exactly <i>k</i>-1 such zeros. Under some suitable conditions, we obtain that there exists <i>λ</i><sub>∗</sub> &gt; 0 (or <i>λ</i><sup>∗</sup> &gt; 0) such that for fixed <i>k</i> ∈ {1, 2,…}, problem (P) has at least one nodal solution for <i>λ</i> ∈ (<i>k</i><sup>2</sup><i>π</i><sup>2</sup>/<i>g</i><sub>∞</sub>, <i>λ</i><sup>∗</sup>) (or <i>λ</i> ∈ (<i>λ</i><sup>∗</sup>,<i> k</i><sup>2</sup><i>π</i><sup>2</sup>/<i>g</i><sub>∞</sub>)), where <i>g</i><sub>∞</sub> = lim<sub>|<i>s</i>|→∞</sub> <i>g</i>(<i>s</i>)/<i>s</i>. The proof of our main results relies on the bifurcation technique.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-03-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10986-024-09625-3\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10986-024-09625-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们证明了二阶非线性边界值问题 $$begin{array}{l}-{u}^{^{prime\prime} }\left(x\right)=\lambda \left(g\left(u\left(x\right)\right)+p\left(x、u\left(x\right),{u}^{\mathrm{^{\prime}}}\left(x\right)\right),x\in \left(\mathrm{0,1}\right),\ u\left(0\right)=u\left(1\right)=0,\end{array} ({\text{P}})$$where λ >;0 是一个参数,p :[对于非负整数 k,如果一个解在(0,1)中只有简单的零点,并且恰好有 k-1 个这样的零点,我们就说这个解是节点解。在一些合适的条件下,我们可以得到存在 λ∗ >0(或 λ∗ >0),使得对于固定的 k∈ {1, 2,... },问题(P)有至少一个简单的零点。} 时,问题(P)至少有一个节点解,即 λ∈ (k2π2/g∞, λ∗) (或 λ∈ (λ∗, k2π2/g∞) ),其中 g∞ = lim|s|→∞ g(s)/s。我们主要结果的证明依赖于分岔技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Nodal solutions for some semipositone problemsvia bifurcation theory

We show the existence of nodal solutions of the second-order nonlinear boundary value problem

$$\begin{array}{l}-{u}^{^{\prime\prime} }\left(x\right)=\lambda \left(g\left(u\left(x\right)\right)+p\left(x,u\left(x\right),{u}^{\mathrm{^{\prime}}}\left(x\right)\right)\right),x\in \left(\mathrm{0,1}\right),\\ u\left(0\right)=u\left(1\right)=0,\end{array} ({\text{P}})$$

where λ > 0 is a parameter, p : [0, 1]×ℝ2 → ℝ and g : ℝ →ℝ are continuous functions, and g(0) = 0. For a nonnegative integer k, we say that a solution is nodal if it has only simple zeros in (0, 1) and has exactly k-1 such zeros. Under some suitable conditions, we obtain that there exists λ > 0 (or λ > 0) such that for fixed k ∈ {1, 2,…}, problem (P) has at least one nodal solution for λ ∈ (k2π2/g, λ) (or λ ∈ (λ, k2π2/g)), where g = lim|s|→∞ g(s)/s. The proof of our main results relies on the bifurcation technique.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信