{"title":"通过分岔理论求解某些半正交问题的节点解","authors":"Yali Zhang, Ruyun Ma","doi":"10.1007/s10986-024-09625-3","DOIUrl":null,"url":null,"abstract":"<p>We show the existence of nodal solutions of the second-order nonlinear boundary value problem </p><span>$$\\begin{array}{l}-{u}^{^{\\prime\\prime} }\\left(x\\right)=\\lambda \\left(g\\left(u\\left(x\\right)\\right)+p\\left(x,u\\left(x\\right),{u}^{\\mathrm{^{\\prime}}}\\left(x\\right)\\right)\\right),x\\in \\left(\\mathrm{0,1}\\right),\\\\ u\\left(0\\right)=u\\left(1\\right)=0,\\end{array} ({\\text{P}})$$</span><p>where <i>λ ></i> 0 is a parameter, <i>p</i> : [0, 1]×ℝ<sup>2</sup> → ℝ and <i>g</i> : ℝ →ℝ are continuous functions, and <i>g</i>(0) = 0. For a nonnegative integer <i>k</i>, we say that a solution is nodal if it has only simple zeros in (0, 1) and has exactly <i>k</i>-1 such zeros. Under some suitable conditions, we obtain that there exists <i>λ</i><sub>∗</sub> > 0 (or <i>λ</i><sup>∗</sup> > 0) such that for fixed <i>k</i> ∈ {1, 2,…}, problem (P) has at least one nodal solution for <i>λ</i> ∈ (<i>k</i><sup>2</sup><i>π</i><sup>2</sup>/<i>g</i><sub>∞</sub>, <i>λ</i><sup>∗</sup>) (or <i>λ</i> ∈ (<i>λ</i><sup>∗</sup>,<i> k</i><sup>2</sup><i>π</i><sup>2</sup>/<i>g</i><sub>∞</sub>)), where <i>g</i><sub>∞</sub> = lim<sub>|<i>s</i>|→∞</sub> <i>g</i>(<i>s</i>)/<i>s</i>. The proof of our main results relies on the bifurcation technique.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nodal solutions for some semipositone problemsvia bifurcation theory\",\"authors\":\"Yali Zhang, Ruyun Ma\",\"doi\":\"10.1007/s10986-024-09625-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We show the existence of nodal solutions of the second-order nonlinear boundary value problem </p><span>$$\\\\begin{array}{l}-{u}^{^{\\\\prime\\\\prime} }\\\\left(x\\\\right)=\\\\lambda \\\\left(g\\\\left(u\\\\left(x\\\\right)\\\\right)+p\\\\left(x,u\\\\left(x\\\\right),{u}^{\\\\mathrm{^{\\\\prime}}}\\\\left(x\\\\right)\\\\right)\\\\right),x\\\\in \\\\left(\\\\mathrm{0,1}\\\\right),\\\\\\\\ u\\\\left(0\\\\right)=u\\\\left(1\\\\right)=0,\\\\end{array} ({\\\\text{P}})$$</span><p>where <i>λ ></i> 0 is a parameter, <i>p</i> : [0, 1]×ℝ<sup>2</sup> → ℝ and <i>g</i> : ℝ →ℝ are continuous functions, and <i>g</i>(0) = 0. For a nonnegative integer <i>k</i>, we say that a solution is nodal if it has only simple zeros in (0, 1) and has exactly <i>k</i>-1 such zeros. Under some suitable conditions, we obtain that there exists <i>λ</i><sub>∗</sub> > 0 (or <i>λ</i><sup>∗</sup> > 0) such that for fixed <i>k</i> ∈ {1, 2,…}, problem (P) has at least one nodal solution for <i>λ</i> ∈ (<i>k</i><sup>2</sup><i>π</i><sup>2</sup>/<i>g</i><sub>∞</sub>, <i>λ</i><sup>∗</sup>) (or <i>λ</i> ∈ (<i>λ</i><sup>∗</sup>,<i> k</i><sup>2</sup><i>π</i><sup>2</sup>/<i>g</i><sub>∞</sub>)), where <i>g</i><sub>∞</sub> = lim<sub>|<i>s</i>|→∞</sub> <i>g</i>(<i>s</i>)/<i>s</i>. The proof of our main results relies on the bifurcation technique.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-03-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10986-024-09625-3\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10986-024-09625-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
where λ > 0 is a parameter, p : [0, 1]×ℝ2 → ℝ and g : ℝ →ℝ are continuous functions, and g(0) = 0. For a nonnegative integer k, we say that a solution is nodal if it has only simple zeros in (0, 1) and has exactly k-1 such zeros. Under some suitable conditions, we obtain that there exists λ∗ > 0 (or λ∗ > 0) such that for fixed k ∈ {1, 2,…}, problem (P) has at least one nodal solution for λ ∈ (k2π2/g∞, λ∗) (or λ ∈ (λ∗, k2π2/g∞)), where g∞ = lim|s|→∞g(s)/s. The proof of our main results relies on the bifurcation technique.