{"title":"对棘轮喷射器中液膜一次破裂的数值模拟:参数研究","authors":"Tinglan Tang, Tai Jin, Gaofeng Wang","doi":"10.1615/atomizspr.2024051051","DOIUrl":null,"url":null,"abstract":"In the present study, numerical simulations have been conducted to investigate the primary breakup of the liquid film in the gas-liquid pintle injector, using the volume of fluid (VOF) method with the adaptive mesh refinement to capture the gas-liquid interface. The film breakup and atomization characteristics in the pintle injector are studied by changing the structure parameters and the momentum ratio. The results show that increasing the radial liquid flow rate to raise the momentum ratio promotes the atomization performance while decreasing the axial gas flow rate deteriorates the atomization performance. The two methods of altering the momentum ratio both cause the spray angle to increase with the momentum ratio, but the first routine leads to a slower increase. With the increase of opening distance, the velocity of the liquid flow decreases, and the thickness of the liquid film increases significantly, making the film hard to break up. The skip distance negatively influences the film breakup and atomization when the skip distance exceeds one. Moreover, the hollow region of the spray is decreased with a longer skip distance, which is detrimental to fuel combustion.","PeriodicalId":8637,"journal":{"name":"Atomization and Sprays","volume":"52 6 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Numerical simulations of liquid film primary breakup in a pintle injector: a parametric study\",\"authors\":\"Tinglan Tang, Tai Jin, Gaofeng Wang\",\"doi\":\"10.1615/atomizspr.2024051051\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the present study, numerical simulations have been conducted to investigate the primary breakup of the liquid film in the gas-liquid pintle injector, using the volume of fluid (VOF) method with the adaptive mesh refinement to capture the gas-liquid interface. The film breakup and atomization characteristics in the pintle injector are studied by changing the structure parameters and the momentum ratio. The results show that increasing the radial liquid flow rate to raise the momentum ratio promotes the atomization performance while decreasing the axial gas flow rate deteriorates the atomization performance. The two methods of altering the momentum ratio both cause the spray angle to increase with the momentum ratio, but the first routine leads to a slower increase. With the increase of opening distance, the velocity of the liquid flow decreases, and the thickness of the liquid film increases significantly, making the film hard to break up. The skip distance negatively influences the film breakup and atomization when the skip distance exceeds one. Moreover, the hollow region of the spray is decreased with a longer skip distance, which is detrimental to fuel combustion.\",\"PeriodicalId\":8637,\"journal\":{\"name\":\"Atomization and Sprays\",\"volume\":\"52 6 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Atomization and Sprays\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1615/atomizspr.2024051051\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Atomization and Sprays","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1615/atomizspr.2024051051","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
Numerical simulations of liquid film primary breakup in a pintle injector: a parametric study
In the present study, numerical simulations have been conducted to investigate the primary breakup of the liquid film in the gas-liquid pintle injector, using the volume of fluid (VOF) method with the adaptive mesh refinement to capture the gas-liquid interface. The film breakup and atomization characteristics in the pintle injector are studied by changing the structure parameters and the momentum ratio. The results show that increasing the radial liquid flow rate to raise the momentum ratio promotes the atomization performance while decreasing the axial gas flow rate deteriorates the atomization performance. The two methods of altering the momentum ratio both cause the spray angle to increase with the momentum ratio, but the first routine leads to a slower increase. With the increase of opening distance, the velocity of the liquid flow decreases, and the thickness of the liquid film increases significantly, making the film hard to break up. The skip distance negatively influences the film breakup and atomization when the skip distance exceeds one. Moreover, the hollow region of the spray is decreased with a longer skip distance, which is detrimental to fuel combustion.
期刊介绍:
The application and utilization of sprays is not new, and in modern society, it is extensive enough that almost every industry and household uses some form of sprays. What is new is an increasing scientific interest in atomization - the need to understand the physical structure of liquids under conditions of higher shear rates and interaction with gaseous flow. This need is being met with the publication of Atomization and Sprays, an authoritative, international journal presenting high quality research, applications, and review papers.