Chetan Kumar Hirwani, Ravi Kumar, Erukala Kalyan Kumar, Subrata Kumar Panda
{"title":"弱粘结曲面复合结构在湿热机械荷载作用下的非线性挠度特性","authors":"Chetan Kumar Hirwani, Ravi Kumar, Erukala Kalyan Kumar, Subrata Kumar Panda","doi":"10.1142/s1758825124500388","DOIUrl":null,"url":null,"abstract":"<p>A customized MATLAB algorithm is developed for internally separated laminated composite panels experiencing large geometric deformations. The algorithm is designed to calculate nonlinear deflection responses under the effect of combined hygro-thermo-mechanical (HTM) loading. The hygrothermal (HT) load on the panel is in-plane, whereas the mechanical load acts upon the structure transversely. The analysis has adopted various kinematic theories and finite element (FE) techniques to determine the deformations computationally. The deflection behavior of the composite is characterized through a macro mechanical model considering the nonlinearity in geometry with and without accounting for the stretching effects across the panel thickness. Additionally, the changes in composite properties due to the environment and/or loadings are adopted to achieve a realistic response, preserving continuity assumptions between the individual layers of the weakly bonded structure. Moreover, various numerical examples are examined through different models to illustrate the influences of environmental factors and design-specific parameters on the flexural strength of weakly bonded structures. The findings strongly emphasize the necessity of employing diverse kinematic models when examining laminated structures, both with and without HT loading, while also acknowledging the potential for debonding.</p>","PeriodicalId":49186,"journal":{"name":"International Journal of Applied Mechanics","volume":null,"pages":null},"PeriodicalIF":2.9000,"publicationDate":"2024-03-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nonlinear Deflection Characteristics of Weakly Bonded Curved Composite Structure Under Hygro-Thermo-Mechanical Loadings\",\"authors\":\"Chetan Kumar Hirwani, Ravi Kumar, Erukala Kalyan Kumar, Subrata Kumar Panda\",\"doi\":\"10.1142/s1758825124500388\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>A customized MATLAB algorithm is developed for internally separated laminated composite panels experiencing large geometric deformations. The algorithm is designed to calculate nonlinear deflection responses under the effect of combined hygro-thermo-mechanical (HTM) loading. The hygrothermal (HT) load on the panel is in-plane, whereas the mechanical load acts upon the structure transversely. The analysis has adopted various kinematic theories and finite element (FE) techniques to determine the deformations computationally. The deflection behavior of the composite is characterized through a macro mechanical model considering the nonlinearity in geometry with and without accounting for the stretching effects across the panel thickness. Additionally, the changes in composite properties due to the environment and/or loadings are adopted to achieve a realistic response, preserving continuity assumptions between the individual layers of the weakly bonded structure. Moreover, various numerical examples are examined through different models to illustrate the influences of environmental factors and design-specific parameters on the flexural strength of weakly bonded structures. The findings strongly emphasize the necessity of employing diverse kinematic models when examining laminated structures, both with and without HT loading, while also acknowledging the potential for debonding.</p>\",\"PeriodicalId\":49186,\"journal\":{\"name\":\"International Journal of Applied Mechanics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.9000,\"publicationDate\":\"2024-03-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Applied Mechanics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1142/s1758825124500388\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Applied Mechanics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1142/s1758825124500388","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MECHANICS","Score":null,"Total":0}
Nonlinear Deflection Characteristics of Weakly Bonded Curved Composite Structure Under Hygro-Thermo-Mechanical Loadings
A customized MATLAB algorithm is developed for internally separated laminated composite panels experiencing large geometric deformations. The algorithm is designed to calculate nonlinear deflection responses under the effect of combined hygro-thermo-mechanical (HTM) loading. The hygrothermal (HT) load on the panel is in-plane, whereas the mechanical load acts upon the structure transversely. The analysis has adopted various kinematic theories and finite element (FE) techniques to determine the deformations computationally. The deflection behavior of the composite is characterized through a macro mechanical model considering the nonlinearity in geometry with and without accounting for the stretching effects across the panel thickness. Additionally, the changes in composite properties due to the environment and/or loadings are adopted to achieve a realistic response, preserving continuity assumptions between the individual layers of the weakly bonded structure. Moreover, various numerical examples are examined through different models to illustrate the influences of environmental factors and design-specific parameters on the flexural strength of weakly bonded structures. The findings strongly emphasize the necessity of employing diverse kinematic models when examining laminated structures, both with and without HT loading, while also acknowledging the potential for debonding.
期刊介绍:
The journal has as its objective the publication and wide electronic dissemination of innovative and consequential research in applied mechanics. IJAM welcomes high-quality original research papers in all aspects of applied mechanics from contributors throughout the world. The journal aims to promote the international exchange of new knowledge and recent development information in all aspects of applied mechanics. In addition to covering the classical branches of applied mechanics, namely solid mechanics, fluid mechanics, thermodynamics, and material science, the journal also encourages contributions from newly emerging areas such as biomechanics, electromechanics, the mechanical behavior of advanced materials, nanomechanics, and many other inter-disciplinary research areas in which the concepts of applied mechanics are extensively applied and developed.