{"title":"有限域上 xn - 1 的代表集和显因式分解","authors":"Manjit Singh, Deepak","doi":"10.1142/s0219498825501701","DOIUrl":null,"url":null,"abstract":"<p>Let <span><math altimg=\"eq-00003.gif\" display=\"inline\" overflow=\"scroll\"><mi>n</mi></math></span><span></span> be a positive integer and let <span><math altimg=\"eq-00004.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi>𝔽</mi></mrow><mrow><mi>q</mi></mrow></msub></math></span><span></span> be a finite field with <span><math altimg=\"eq-00005.gif\" display=\"inline\" overflow=\"scroll\"><mi>q</mi></math></span><span></span> elements, where <span><math altimg=\"eq-00006.gif\" display=\"inline\" overflow=\"scroll\"><mi>q</mi></math></span><span></span> is a prime power and <span><math altimg=\"eq-00007.gif\" display=\"inline\" overflow=\"scroll\"><mo>gcd</mo><mo stretchy=\"false\">(</mo><mi>n</mi><mo>,</mo><mi>q</mi><mo stretchy=\"false\">)</mo><mo>=</mo><mn>1</mn></math></span><span></span>. In this paper, we give the explicit factorization of <span><math altimg=\"eq-00008.gif\" display=\"inline\" overflow=\"scroll\"><msup><mrow><mi>x</mi></mrow><mrow><mi>n</mi></mrow></msup><mo stretchy=\"false\">−</mo><mn>1</mn></math></span><span></span> over <span><math altimg=\"eq-00009.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi>𝔽</mi></mrow><mrow><mi>q</mi></mrow></msub></math></span><span></span> and count the number of its irreducible factors for the following conditions: <span><math altimg=\"eq-00010.gif\" display=\"inline\" overflow=\"scroll\"><mi>n</mi><mo>,</mo><mi>q</mi></math></span><span></span> are odd and <span><math altimg=\"eq-00011.gif\" display=\"inline\" overflow=\"scroll\"><mstyle><mtext>rad</mtext></mstyle><mo stretchy=\"false\">(</mo><mi>n</mi><mo stretchy=\"false\">)</mo><mo>|</mo><mo stretchy=\"false\">(</mo><msup><mrow><mi>q</mi></mrow><mrow><mn>2</mn></mrow></msup><mo stretchy=\"false\">+</mo><mn>1</mn><mo stretchy=\"false\">)</mo></math></span><span></span>. First, we present a method to obtain the set of all representatives of <span><math altimg=\"eq-00012.gif\" display=\"inline\" overflow=\"scroll\"><mi>q</mi></math></span><span></span>-cyclotomic cosets modulo <span><math altimg=\"eq-00013.gif\" display=\"inline\" overflow=\"scroll\"><mi>m</mi></math></span><span></span>, where <span><math altimg=\"eq-00014.gif\" display=\"inline\" overflow=\"scroll\"><mi>m</mi><mo>=</mo><mo>gcd</mo><mo stretchy=\"false\">(</mo><mi>n</mi><mo>,</mo><msup><mrow><mi>q</mi></mrow><mrow><mn>2</mn></mrow></msup><mo stretchy=\"false\">+</mo><mn>1</mn><mo stretchy=\"false\">)</mo></math></span><span></span>. This set of representatives is then used to find the irreducible factors of <span><math altimg=\"eq-00015.gif\" display=\"inline\" overflow=\"scroll\"><msup><mrow><mi>x</mi></mrow><mrow><mi>n</mi></mrow></msup><mo stretchy=\"false\">−</mo><mn>1</mn></math></span><span></span> and the cyclotomic polynomial <span><math altimg=\"eq-00016.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi mathvariant=\"normal\">Φ</mi></mrow><mrow><mi>n</mi></mrow></msub><mo stretchy=\"false\">(</mo><mi>x</mi><mo stretchy=\"false\">)</mo></math></span><span></span> over <span><math altimg=\"eq-00017.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi>𝔽</mi></mrow><mrow><mi>q</mi></mrow></msub></math></span><span></span>. The form of irreducible factors of <span><math altimg=\"eq-00018.gif\" display=\"inline\" overflow=\"scroll\"><msup><mrow><mi>x</mi></mrow><mrow><mi>n</mi></mrow></msup><mo stretchy=\"false\">−</mo><mn>1</mn></math></span><span></span> is characterized such that the coefficients of these irreducible factors are followed by second-order linear recurring sequences.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The set of representatives and explicit factorization of xn − 1 over finite fields\",\"authors\":\"Manjit Singh, Deepak\",\"doi\":\"10.1142/s0219498825501701\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Let <span><math altimg=\\\"eq-00003.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>n</mi></math></span><span></span> be a positive integer and let <span><math altimg=\\\"eq-00004.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><msub><mrow><mi>𝔽</mi></mrow><mrow><mi>q</mi></mrow></msub></math></span><span></span> be a finite field with <span><math altimg=\\\"eq-00005.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>q</mi></math></span><span></span> elements, where <span><math altimg=\\\"eq-00006.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>q</mi></math></span><span></span> is a prime power and <span><math altimg=\\\"eq-00007.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mo>gcd</mo><mo stretchy=\\\"false\\\">(</mo><mi>n</mi><mo>,</mo><mi>q</mi><mo stretchy=\\\"false\\\">)</mo><mo>=</mo><mn>1</mn></math></span><span></span>. In this paper, we give the explicit factorization of <span><math altimg=\\\"eq-00008.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><msup><mrow><mi>x</mi></mrow><mrow><mi>n</mi></mrow></msup><mo stretchy=\\\"false\\\">−</mo><mn>1</mn></math></span><span></span> over <span><math altimg=\\\"eq-00009.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><msub><mrow><mi>𝔽</mi></mrow><mrow><mi>q</mi></mrow></msub></math></span><span></span> and count the number of its irreducible factors for the following conditions: <span><math altimg=\\\"eq-00010.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>n</mi><mo>,</mo><mi>q</mi></math></span><span></span> are odd and <span><math altimg=\\\"eq-00011.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mstyle><mtext>rad</mtext></mstyle><mo stretchy=\\\"false\\\">(</mo><mi>n</mi><mo stretchy=\\\"false\\\">)</mo><mo>|</mo><mo stretchy=\\\"false\\\">(</mo><msup><mrow><mi>q</mi></mrow><mrow><mn>2</mn></mrow></msup><mo stretchy=\\\"false\\\">+</mo><mn>1</mn><mo stretchy=\\\"false\\\">)</mo></math></span><span></span>. First, we present a method to obtain the set of all representatives of <span><math altimg=\\\"eq-00012.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>q</mi></math></span><span></span>-cyclotomic cosets modulo <span><math altimg=\\\"eq-00013.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>m</mi></math></span><span></span>, where <span><math altimg=\\\"eq-00014.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>m</mi><mo>=</mo><mo>gcd</mo><mo stretchy=\\\"false\\\">(</mo><mi>n</mi><mo>,</mo><msup><mrow><mi>q</mi></mrow><mrow><mn>2</mn></mrow></msup><mo stretchy=\\\"false\\\">+</mo><mn>1</mn><mo stretchy=\\\"false\\\">)</mo></math></span><span></span>. This set of representatives is then used to find the irreducible factors of <span><math altimg=\\\"eq-00015.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><msup><mrow><mi>x</mi></mrow><mrow><mi>n</mi></mrow></msup><mo stretchy=\\\"false\\\">−</mo><mn>1</mn></math></span><span></span> and the cyclotomic polynomial <span><math altimg=\\\"eq-00016.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><msub><mrow><mi mathvariant=\\\"normal\\\">Φ</mi></mrow><mrow><mi>n</mi></mrow></msub><mo stretchy=\\\"false\\\">(</mo><mi>x</mi><mo stretchy=\\\"false\\\">)</mo></math></span><span></span> over <span><math altimg=\\\"eq-00017.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><msub><mrow><mi>𝔽</mi></mrow><mrow><mi>q</mi></mrow></msub></math></span><span></span>. The form of irreducible factors of <span><math altimg=\\\"eq-00018.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><msup><mrow><mi>x</mi></mrow><mrow><mi>n</mi></mrow></msup><mo stretchy=\\\"false\\\">−</mo><mn>1</mn></math></span><span></span> is characterized such that the coefficients of these irreducible factors are followed by second-order linear recurring sequences.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-01-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1142/s0219498825501701\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s0219498825501701","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The set of representatives and explicit factorization of xn − 1 over finite fields
Let be a positive integer and let be a finite field with elements, where is a prime power and . In this paper, we give the explicit factorization of over and count the number of its irreducible factors for the following conditions: are odd and . First, we present a method to obtain the set of all representatives of -cyclotomic cosets modulo , where . This set of representatives is then used to find the irreducible factors of and the cyclotomic polynomial over . The form of irreducible factors of is characterized such that the coefficients of these irreducible factors are followed by second-order linear recurring sequences.