{"title":"二次黎曼-罗赫公式","authors":"Frédéric Déglise, Jean Fasel","doi":"arxiv-2403.09266","DOIUrl":null,"url":null,"abstract":"In this article, we produce Grothendieck-Riemann-Roch formulas for cohomology\ntheories that are not oriented in the classical sense. We then specialize to\nthe case of cohomology theories that admit a so-called symplectic orientation\nand show how to compute the relevant Todd classes in that situation. At the end\nof the article, we illustrate our methods on the Borel character linking\nHermitian K-theory and rational MW-motivic cohomology.","PeriodicalId":501143,"journal":{"name":"arXiv - MATH - K-Theory and Homology","volume":"69 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Quadratic Riemann-Roch formulas\",\"authors\":\"Frédéric Déglise, Jean Fasel\",\"doi\":\"arxiv-2403.09266\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this article, we produce Grothendieck-Riemann-Roch formulas for cohomology\\ntheories that are not oriented in the classical sense. We then specialize to\\nthe case of cohomology theories that admit a so-called symplectic orientation\\nand show how to compute the relevant Todd classes in that situation. At the end\\nof the article, we illustrate our methods on the Borel character linking\\nHermitian K-theory and rational MW-motivic cohomology.\",\"PeriodicalId\":501143,\"journal\":{\"name\":\"arXiv - MATH - K-Theory and Homology\",\"volume\":\"69 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"arXiv - MATH - K-Theory and Homology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/arxiv-2403.09266\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - MATH - K-Theory and Homology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2403.09266","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
在这篇文章中,我们为非经典意义上定向的同调理论提出了格罗恩迪克-黎曼-罗赫公式。然后,我们专门讨论了允许所谓交映定向的同调理论的情况,并展示了如何计算这种情况下的相关托德类。在文章的最后,我们说明了我们在连接赫米蒂 K 理论和有理 MW 动机同调的伯勒尔特性上的方法。
In this article, we produce Grothendieck-Riemann-Roch formulas for cohomology
theories that are not oriented in the classical sense. We then specialize to
the case of cohomology theories that admit a so-called symplectic orientation
and show how to compute the relevant Todd classes in that situation. At the end
of the article, we illustrate our methods on the Borel character linking
Hermitian K-theory and rational MW-motivic cohomology.