基于改进的 U-net 深度学习网络模型和扫描电子显微镜图像实现了孔隙表征

IF 1.3 4区 工程技术 Q4 ENERGY & FUELS
Xiangru Chen, Xin Tang, Junjie Xiong, Ruiyu He, Biao Wang
{"title":"基于改进的 U-net 深度学习网络模型和扫描电子显微镜图像实现了孔隙表征","authors":"Xiangru Chen, Xin Tang, Junjie Xiong, Ruiyu He, Biao Wang","doi":"10.1080/10916466.2024.2326178","DOIUrl":null,"url":null,"abstract":"The SEM image method is commonly used in the qualitative characterization of shale pores. The development of shale micro-reservoir pores can be visually observed through SEM images, but the efficie...","PeriodicalId":19888,"journal":{"name":"Petroleum Science and Technology","volume":"9 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Pore characterization was achieved based on the improved U-net deep learning network model and scanning electron microscope images\",\"authors\":\"Xiangru Chen, Xin Tang, Junjie Xiong, Ruiyu He, Biao Wang\",\"doi\":\"10.1080/10916466.2024.2326178\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The SEM image method is commonly used in the qualitative characterization of shale pores. The development of shale micro-reservoir pores can be visually observed through SEM images, but the efficie...\",\"PeriodicalId\":19888,\"journal\":{\"name\":\"Petroleum Science and Technology\",\"volume\":\"9 1\",\"pages\":\"\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2024-03-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Petroleum Science and Technology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/10916466.2024.2326178\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Petroleum Science and Technology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/10916466.2024.2326178","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

扫描电镜图像法常用于页岩孔隙的定性表征。通过扫描电镜图像可以直观地观察到页岩微储层孔隙的发育情况,但扫描电镜图像法的效率较低。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Pore characterization was achieved based on the improved U-net deep learning network model and scanning electron microscope images
The SEM image method is commonly used in the qualitative characterization of shale pores. The development of shale micro-reservoir pores can be visually observed through SEM images, but the efficie...
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Petroleum Science and Technology
Petroleum Science and Technology 工程技术-工程:化工
CiteScore
2.90
自引率
13.30%
发文量
277
审稿时长
2.7 months
期刊介绍: The international journal of Petroleum Science and Technology publishes original, high-quality peer-reviewed research and review articles that explore: -The fundamental science of fluid-fluid and rock-fluids interactions and multi-phase interfacial and transport phenomena through porous media related to advanced petroleum recovery processes, -The application of novel concepts and processes for enhancing recovery of subsurface energy resources in a carbon-sensitive manner, -Case studies of scaling up the laboratory research findings to field pilots and field-wide applications. -Other salient technological challenges facing the petroleum industry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信