{"title":"论洛伦兹 3 空间中的空间机制","authors":"","doi":"10.1007/s00009-024-02606-3","DOIUrl":null,"url":null,"abstract":"<h3>Abstract</h3> <p>Let <span> <span>\\(L^{4}\\)</span> </span> be a 4-dimensional Lorentzian space with the sign (−,+,+,+). The aim of this study is to investigate the other missing algebraic forms of the constraint manifolds of 2C and 3C spatial open chains in <span> <span>\\(L^{4}\\)</span> </span>. For this purpose, firstly, we obtain the structure equations of a spatial open chain using the equations of open chains of the Lorentz plane and Lorentz sphere. After then, using these structure equations, we search the algebraic forms of the constraint manifolds of 2C and 3C spatial open chains in Lorentzian 3-space with respect to the causal characters of the first link and the axis of rotation of the joint.</p>","PeriodicalId":49829,"journal":{"name":"Mediterranean Journal of Mathematics","volume":"39 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2024-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On Spatial Mechanisms in Lorentzian 3-Space\",\"authors\":\"\",\"doi\":\"10.1007/s00009-024-02606-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3>Abstract</h3> <p>Let <span> <span>\\\\(L^{4}\\\\)</span> </span> be a 4-dimensional Lorentzian space with the sign (−,+,+,+). The aim of this study is to investigate the other missing algebraic forms of the constraint manifolds of 2C and 3C spatial open chains in <span> <span>\\\\(L^{4}\\\\)</span> </span>. For this purpose, firstly, we obtain the structure equations of a spatial open chain using the equations of open chains of the Lorentz plane and Lorentz sphere. After then, using these structure equations, we search the algebraic forms of the constraint manifolds of 2C and 3C spatial open chains in Lorentzian 3-space with respect to the causal characters of the first link and the axis of rotation of the joint.</p>\",\"PeriodicalId\":49829,\"journal\":{\"name\":\"Mediterranean Journal of Mathematics\",\"volume\":\"39 1\",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2024-03-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mediterranean Journal of Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00009-024-02606-3\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mediterranean Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00009-024-02606-3","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Let \(L^{4}\) be a 4-dimensional Lorentzian space with the sign (−,+,+,+). The aim of this study is to investigate the other missing algebraic forms of the constraint manifolds of 2C and 3C spatial open chains in \(L^{4}\). For this purpose, firstly, we obtain the structure equations of a spatial open chain using the equations of open chains of the Lorentz plane and Lorentz sphere. After then, using these structure equations, we search the algebraic forms of the constraint manifolds of 2C and 3C spatial open chains in Lorentzian 3-space with respect to the causal characters of the first link and the axis of rotation of the joint.
期刊介绍:
The Mediterranean Journal of Mathematics (MedJM) is a publication issued by the Department of Mathematics of the University of Bari. The new journal replaces the Conferenze del Seminario di Matematica dell’Università di Bari which has been in publication from 1954 until 2003.
The Mediterranean Journal of Mathematics aims to publish original and high-quality peer-reviewed papers containing significant results across all fields of mathematics. The submitted papers should be of medium length (not to exceed 20 printed pages), well-written and appealing to a broad mathematical audience.
In particular, the Mediterranean Journal of Mathematics intends to offer mathematicians from the Mediterranean countries a particular opportunity to circulate the results of their researches in a common journal. Through such a new cultural and scientific stimulus the journal aims to contribute to further integration amongst Mediterranean universities, though it is open to contribution from mathematicians across the world.