Cesàro $$mathfrak {q}$ -差分序列空间和加权 $$mathfrak {q}$ -差分算子的频谱

IF 0.7 4区 数学 Q2 MATHEMATICS
Taja Yaying, Bipan Hazarika, Pinakadhar Baliarsingh, Mohammad Mursaleen
{"title":"Cesàro $$mathfrak {q}$ -差分序列空间和加权 $$mathfrak {q}$ -差分算子的频谱","authors":"Taja Yaying, Bipan Hazarika, Pinakadhar Baliarsingh, Mohammad Mursaleen","doi":"10.1007/s41980-024-00862-3","DOIUrl":null,"url":null,"abstract":"<p>In this research paper, we undertake an investigation into Cesàro <span>\\(\\mathfrak {q}\\)</span>-difference sequence spaces <span>\\(\\mathfrak {X}(\\mathfrak {C}_1^{\\delta ;\\mathfrak {q}})\\)</span>, where <span>\\(\\mathfrak {X} \\in \\{\\ell _{\\infty },c,c_0\\}.\\)</span> These spaces are generated using the matrix <span>\\(\\mathfrak {C}_1^{\\delta ,\\mathfrak {q}}\\)</span>, which is a product of the Cesàro matrix <span>\\(\\mathfrak {C}_1\\)</span> of the first-order and the second-order <span>\\(\\mathfrak {q}\\)</span>-difference operator <span>\\(\\nabla ^2_\\mathfrak {q}\\)</span> defined by </p><span>$$\\begin{aligned} (\\nabla ^2_\\mathfrak {q} \\mathfrak {f})_k=\\mathfrak {f}_k-(1+\\mathfrak {q})\\mathfrak {f}_{k-1}+\\mathfrak {q}\\mathfrak {f}_{k-2},~(k\\in \\mathbb {N}_0), \\end{aligned}$$</span><p>where <span>\\(\\mathfrak {q}\\in (0,1)\\)</span> and <span>\\(\\mathfrak {f}_k=0\\)</span> for <span>\\(k&lt;0.\\)</span> Our endeavor includes the establishment of significant inclusion relationships, the determination of bases for these spaces, the investigation of their <span>\\(\\alpha \\)</span>-, <span>\\(\\beta \\)</span>-, and <span>\\(\\gamma \\)</span>-duals, and the formulation of characterization results pertaining to matrix classes <span>\\((\\mathfrak {X},\\mathfrak {Y})\\)</span>, with <span>\\(\\mathfrak {X}\\)</span> chosen from the set <span>\\(\\{\\ell _{\\infty }(\\mathfrak {C}_1^{\\delta ;\\mathfrak {q}}), c(\\mathfrak {C_1^{\\delta ;\\mathfrak {q}}}), c_0(\\mathfrak {C}_1^{\\delta ;\\mathfrak {q}})\\}\\)</span> and <span>\\(\\mathfrak {Y}\\)</span> chosen from the set <span>\\(\\{\\ell _{\\infty },c,c_0,\\ell _{1}\\}.\\)</span> The final section of our study is dedicated to the meticulous spectral analysis of the weighted <span>\\(\\mathfrak {q}\\)</span>-difference operator <span>\\(\\nabla ^{2;\\mathfrak {z}}_{\\mathfrak {q}}\\)</span> over the space <span>\\(c_0\\)</span> of null sequences.</p>","PeriodicalId":9395,"journal":{"name":"Bulletin of The Iranian Mathematical Society","volume":null,"pages":null},"PeriodicalIF":0.7000,"publicationDate":"2024-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cesàro $$\\\\mathfrak {q}$$ -Difference Sequence Spaces and Spectrum of Weighted $$\\\\mathfrak {q}$$ -Difference Operator\",\"authors\":\"Taja Yaying, Bipan Hazarika, Pinakadhar Baliarsingh, Mohammad Mursaleen\",\"doi\":\"10.1007/s41980-024-00862-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this research paper, we undertake an investigation into Cesàro <span>\\\\(\\\\mathfrak {q}\\\\)</span>-difference sequence spaces <span>\\\\(\\\\mathfrak {X}(\\\\mathfrak {C}_1^{\\\\delta ;\\\\mathfrak {q}})\\\\)</span>, where <span>\\\\(\\\\mathfrak {X} \\\\in \\\\{\\\\ell _{\\\\infty },c,c_0\\\\}.\\\\)</span> These spaces are generated using the matrix <span>\\\\(\\\\mathfrak {C}_1^{\\\\delta ,\\\\mathfrak {q}}\\\\)</span>, which is a product of the Cesàro matrix <span>\\\\(\\\\mathfrak {C}_1\\\\)</span> of the first-order and the second-order <span>\\\\(\\\\mathfrak {q}\\\\)</span>-difference operator <span>\\\\(\\\\nabla ^2_\\\\mathfrak {q}\\\\)</span> defined by </p><span>$$\\\\begin{aligned} (\\\\nabla ^2_\\\\mathfrak {q} \\\\mathfrak {f})_k=\\\\mathfrak {f}_k-(1+\\\\mathfrak {q})\\\\mathfrak {f}_{k-1}+\\\\mathfrak {q}\\\\mathfrak {f}_{k-2},~(k\\\\in \\\\mathbb {N}_0), \\\\end{aligned}$$</span><p>where <span>\\\\(\\\\mathfrak {q}\\\\in (0,1)\\\\)</span> and <span>\\\\(\\\\mathfrak {f}_k=0\\\\)</span> for <span>\\\\(k&lt;0.\\\\)</span> Our endeavor includes the establishment of significant inclusion relationships, the determination of bases for these spaces, the investigation of their <span>\\\\(\\\\alpha \\\\)</span>-, <span>\\\\(\\\\beta \\\\)</span>-, and <span>\\\\(\\\\gamma \\\\)</span>-duals, and the formulation of characterization results pertaining to matrix classes <span>\\\\((\\\\mathfrak {X},\\\\mathfrak {Y})\\\\)</span>, with <span>\\\\(\\\\mathfrak {X}\\\\)</span> chosen from the set <span>\\\\(\\\\{\\\\ell _{\\\\infty }(\\\\mathfrak {C}_1^{\\\\delta ;\\\\mathfrak {q}}), c(\\\\mathfrak {C_1^{\\\\delta ;\\\\mathfrak {q}}}), c_0(\\\\mathfrak {C}_1^{\\\\delta ;\\\\mathfrak {q}})\\\\}\\\\)</span> and <span>\\\\(\\\\mathfrak {Y}\\\\)</span> chosen from the set <span>\\\\(\\\\{\\\\ell _{\\\\infty },c,c_0,\\\\ell _{1}\\\\}.\\\\)</span> The final section of our study is dedicated to the meticulous spectral analysis of the weighted <span>\\\\(\\\\mathfrak {q}\\\\)</span>-difference operator <span>\\\\(\\\\nabla ^{2;\\\\mathfrak {z}}_{\\\\mathfrak {q}}\\\\)</span> over the space <span>\\\\(c_0\\\\)</span> of null sequences.</p>\",\"PeriodicalId\":9395,\"journal\":{\"name\":\"Bulletin of The Iranian Mathematical Society\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2024-03-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of The Iranian Mathematical Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s41980-024-00862-3\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of The Iranian Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s41980-024-00862-3","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

在这篇研究论文中,我们对 Cesàro ( (mathfrak {q})-差分序列空间进行了研究,其中 ( (mathfrak {X}(\mathfrak {C}_1^{\delta ;\mathfrak {q}})。\这些空间是通过矩阵 \(\mathfrak {C}_1^\{delta ,\mathfrak {q}}\) 生成的、)是一阶 Cesàro 矩阵和二阶 Cesàro 矩阵的乘积。差分算子由 $$\begin{aligned} (\nabla ^2_\mathfrak {q} \mathfrak {f})_k=\mathfrak {f}_k-(1+\mathfrak {q})\mathfrak {f}_{k-1}+\mathfrak {q}\mathfrak {f}_{k-2} 定义、~(k\in \mathbb {N}_0), \end{aligned}$ 其中 \(\mathfrak {q}\in (0,1)\) and\(\mathfrak {f}_k=0\) for \(k<;0.\我们的努力包括建立重要的包含关系,确定这些空间的基础,研究它们的α、β和γ二元、以及与矩阵类 \((\mathfrak {X},\mathfrak {Y})\)相关的特征结果的表述,其中 \(\mathfrak {X}\) 从集合 \(\{ell _{\infty }(\mathfrak {C}_1^{\delta ;\c(\mathfrak {C}_1^{\delta ;\mathfrak {q}}), c_0(\mathfrak {C}_1^{\delta ;\mathfrak {q}})\}) and\(\mathfrak {Y}\) select from the set \(\{ell _{infty },c,c_0,\ell _{1}\}.\我们研究的最后一部分致力于对空序列空间(c_0)上的加权(\mathfrak {q}\)-差分算子(\nabla ^{2;\mathfrak {z}}_{\mathfrak {q}}\)进行细致的谱分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Cesàro $$\mathfrak {q}$$ -Difference Sequence Spaces and Spectrum of Weighted $$\mathfrak {q}$$ -Difference Operator

In this research paper, we undertake an investigation into Cesàro \(\mathfrak {q}\)-difference sequence spaces \(\mathfrak {X}(\mathfrak {C}_1^{\delta ;\mathfrak {q}})\), where \(\mathfrak {X} \in \{\ell _{\infty },c,c_0\}.\) These spaces are generated using the matrix \(\mathfrak {C}_1^{\delta ,\mathfrak {q}}\), which is a product of the Cesàro matrix \(\mathfrak {C}_1\) of the first-order and the second-order \(\mathfrak {q}\)-difference operator \(\nabla ^2_\mathfrak {q}\) defined by

$$\begin{aligned} (\nabla ^2_\mathfrak {q} \mathfrak {f})_k=\mathfrak {f}_k-(1+\mathfrak {q})\mathfrak {f}_{k-1}+\mathfrak {q}\mathfrak {f}_{k-2},~(k\in \mathbb {N}_0), \end{aligned}$$

where \(\mathfrak {q}\in (0,1)\) and \(\mathfrak {f}_k=0\) for \(k<0.\) Our endeavor includes the establishment of significant inclusion relationships, the determination of bases for these spaces, the investigation of their \(\alpha \)-, \(\beta \)-, and \(\gamma \)-duals, and the formulation of characterization results pertaining to matrix classes \((\mathfrak {X},\mathfrak {Y})\), with \(\mathfrak {X}\) chosen from the set \(\{\ell _{\infty }(\mathfrak {C}_1^{\delta ;\mathfrak {q}}), c(\mathfrak {C_1^{\delta ;\mathfrak {q}}}), c_0(\mathfrak {C}_1^{\delta ;\mathfrak {q}})\}\) and \(\mathfrak {Y}\) chosen from the set \(\{\ell _{\infty },c,c_0,\ell _{1}\}.\) The final section of our study is dedicated to the meticulous spectral analysis of the weighted \(\mathfrak {q}\)-difference operator \(\nabla ^{2;\mathfrak {z}}_{\mathfrak {q}}\) over the space \(c_0\) of null sequences.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Bulletin of The Iranian Mathematical Society
Bulletin of The Iranian Mathematical Society Mathematics-General Mathematics
CiteScore
1.40
自引率
0.00%
发文量
64
期刊介绍: The Bulletin of the Iranian Mathematical Society (BIMS) publishes original research papers as well as survey articles on a variety of hot topics from distinguished mathematicians. Research papers presented comprise of innovative contributions while expository survey articles feature important results that appeal to a broad audience. Articles are expected to address active research topics and are required to cite existing (including recent) relevant literature appropriately. Papers are critically reviewed on the basis of quality in its exposition, brevity, potential applications, motivation, value and originality of the results. The BIMS takes a high standard policy against any type plagiarism. The editorial board is devoted to solicit expert referees for a fast and unbiased review process.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信