Lihua Shi, Tuo Chen, Yunjie Shu, Hailong Dang, Changbing Tong, Pengxing Cui, Diaodiao Shi, Min Wang, Xiaoliang Zhao, Shuangchun Yang
{"title":"裂缝对油页岩对流加热效率影响的模拟研究","authors":"Lihua Shi, Tuo Chen, Yunjie Shu, Hailong Dang, Changbing Tong, Pengxing Cui, Diaodiao Shi, Min Wang, Xiaoliang Zhao, Shuangchun Yang","doi":"10.1007/s10553-024-01661-6","DOIUrl":null,"url":null,"abstract":"<p>Oil shale, as an unconventional energy source, has attracted much attention in countries worldwide. The traditional way of extracting oil shale from the open pit is not only costly but also polluting to the environment. Sufficient understanding of the relationship between subsurface fractures and temperature fields is important for the extraction of oil shale and is of great significance for the actual in-situ extraction of oil shale. The study of fracture initiation and expansion in oil shale formations is based on the effect of fractures on convective heating efficiency in oil shale in situ conversion technology. In view of the objective situation that hydraulic fracturing can enhance the rate of the permeability and heating efficiency of oil shale formations, and hence the oil yield, the effect of single fractures with different fracture heights (2 mm, 4 mm, 8 mm) on the temperature field of oil shale; and the effect of multiple fractures (two, three and four fractures) on the temperature field of oil shale are investigated under convective heating methods.</p>","PeriodicalId":9908,"journal":{"name":"Chemistry and Technology of Fuels and Oils","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2024-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Simulation Study of the Effect of Fractures on Convective Heating Efficiency in Oil Shale\",\"authors\":\"Lihua Shi, Tuo Chen, Yunjie Shu, Hailong Dang, Changbing Tong, Pengxing Cui, Diaodiao Shi, Min Wang, Xiaoliang Zhao, Shuangchun Yang\",\"doi\":\"10.1007/s10553-024-01661-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Oil shale, as an unconventional energy source, has attracted much attention in countries worldwide. The traditional way of extracting oil shale from the open pit is not only costly but also polluting to the environment. Sufficient understanding of the relationship between subsurface fractures and temperature fields is important for the extraction of oil shale and is of great significance for the actual in-situ extraction of oil shale. The study of fracture initiation and expansion in oil shale formations is based on the effect of fractures on convective heating efficiency in oil shale in situ conversion technology. In view of the objective situation that hydraulic fracturing can enhance the rate of the permeability and heating efficiency of oil shale formations, and hence the oil yield, the effect of single fractures with different fracture heights (2 mm, 4 mm, 8 mm) on the temperature field of oil shale; and the effect of multiple fractures (two, three and four fractures) on the temperature field of oil shale are investigated under convective heating methods.</p>\",\"PeriodicalId\":9908,\"journal\":{\"name\":\"Chemistry and Technology of Fuels and Oils\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2024-03-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chemistry and Technology of Fuels and Oils\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s10553-024-01661-6\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemistry and Technology of Fuels and Oils","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s10553-024-01661-6","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Simulation Study of the Effect of Fractures on Convective Heating Efficiency in Oil Shale
Oil shale, as an unconventional energy source, has attracted much attention in countries worldwide. The traditional way of extracting oil shale from the open pit is not only costly but also polluting to the environment. Sufficient understanding of the relationship between subsurface fractures and temperature fields is important for the extraction of oil shale and is of great significance for the actual in-situ extraction of oil shale. The study of fracture initiation and expansion in oil shale formations is based on the effect of fractures on convective heating efficiency in oil shale in situ conversion technology. In view of the objective situation that hydraulic fracturing can enhance the rate of the permeability and heating efficiency of oil shale formations, and hence the oil yield, the effect of single fractures with different fracture heights (2 mm, 4 mm, 8 mm) on the temperature field of oil shale; and the effect of multiple fractures (two, three and four fractures) on the temperature field of oil shale are investigated under convective heating methods.
期刊介绍:
Chemistry and Technology of Fuels and Oils publishes reports on improvements in the processing of petroleum and natural gas and cracking and refining techniques for the production of high-quality fuels, oils, greases, specialty fluids, additives and synthetics. The journal includes timely articles on the demulsification, desalting, and desulfurizing of crude oil; new flow plans for refineries; platforming, isomerization, catalytic reforming, and alkylation processes for obtaining aromatic hydrocarbons and high-octane gasoline; methods of producing ethylene, acetylene, benzene, acids, alcohols, esters, and other compounds from petroleum, as well as hydrogen from natural gas and liquid products.