Van Giao Nguyen, Prabhakar Sharma, Ümit Ağbulut, Huu Son Le, Dao Nam Cao, Marek Dzida, Sameh M. Osman, Huu Cuong Le, Viet Dung Tran
{"title":"通过实施易用的机器学习方法,改进对各种生物质来源的生物炭产量的预测","authors":"Van Giao Nguyen, Prabhakar Sharma, Ümit Ağbulut, Huu Son Le, Dao Nam Cao, Marek Dzida, Sameh M. Osman, Huu Cuong Le, Viet Dung Tran","doi":"10.1080/15435075.2024.2326076","DOIUrl":null,"url":null,"abstract":"Examining the game-changing possibilities of explainable machine learning techniques, this study explores the fast-growing area of biochar production prediction. The paper demonstrates how recent a...","PeriodicalId":14000,"journal":{"name":"International Journal of Green Energy","volume":"38 1","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improving the prediction of biochar production from various biomass sources through the implementation of eXplainable machine learning approaches\",\"authors\":\"Van Giao Nguyen, Prabhakar Sharma, Ümit Ağbulut, Huu Son Le, Dao Nam Cao, Marek Dzida, Sameh M. Osman, Huu Cuong Le, Viet Dung Tran\",\"doi\":\"10.1080/15435075.2024.2326076\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Examining the game-changing possibilities of explainable machine learning techniques, this study explores the fast-growing area of biochar production prediction. The paper demonstrates how recent a...\",\"PeriodicalId\":14000,\"journal\":{\"name\":\"International Journal of Green Energy\",\"volume\":\"38 1\",\"pages\":\"\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-03-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Green Energy\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/15435075.2024.2326076\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Green Energy","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/15435075.2024.2326076","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Improving the prediction of biochar production from various biomass sources through the implementation of eXplainable machine learning approaches
Examining the game-changing possibilities of explainable machine learning techniques, this study explores the fast-growing area of biochar production prediction. The paper demonstrates how recent a...
期刊介绍:
International Journal of Green Energy shares multidisciplinary research results in the fields of energy research, energy conversion, energy management, and energy conservation, with a particular interest in advanced, environmentally friendly energy technologies. We publish research that focuses on the forms and utilizations of energy that have no, minimal, or reduced impact on environment, economy and society.