通过实施易用的机器学习方法,改进对各种生物质来源的生物炭产量的预测

IF 3.1 4区 工程技术 Q3 ENERGY & FUELS
Van Giao Nguyen, Prabhakar Sharma, Ümit Ağbulut, Huu Son Le, Dao Nam Cao, Marek Dzida, Sameh M. Osman, Huu Cuong Le, Viet Dung Tran
{"title":"通过实施易用的机器学习方法,改进对各种生物质来源的生物炭产量的预测","authors":"Van Giao Nguyen, Prabhakar Sharma, Ümit Ağbulut, Huu Son Le, Dao Nam Cao, Marek Dzida, Sameh M. Osman, Huu Cuong Le, Viet Dung Tran","doi":"10.1080/15435075.2024.2326076","DOIUrl":null,"url":null,"abstract":"Examining the game-changing possibilities of explainable machine learning techniques, this study explores the fast-growing area of biochar production prediction. The paper demonstrates how recent a...","PeriodicalId":14000,"journal":{"name":"International Journal of Green Energy","volume":"38 1","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improving the prediction of biochar production from various biomass sources through the implementation of eXplainable machine learning approaches\",\"authors\":\"Van Giao Nguyen, Prabhakar Sharma, Ümit Ağbulut, Huu Son Le, Dao Nam Cao, Marek Dzida, Sameh M. Osman, Huu Cuong Le, Viet Dung Tran\",\"doi\":\"10.1080/15435075.2024.2326076\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Examining the game-changing possibilities of explainable machine learning techniques, this study explores the fast-growing area of biochar production prediction. The paper demonstrates how recent a...\",\"PeriodicalId\":14000,\"journal\":{\"name\":\"International Journal of Green Energy\",\"volume\":\"38 1\",\"pages\":\"\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-03-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Green Energy\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1080/15435075.2024.2326076\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Green Energy","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/15435075.2024.2326076","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

摘要

本研究探讨了可解释机器学习技术改变游戏规则的可能性,探索了快速发展的生物炭生产预测领域。论文展示了最近的机器学习技术是如何...
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Improving the prediction of biochar production from various biomass sources through the implementation of eXplainable machine learning approaches
Examining the game-changing possibilities of explainable machine learning techniques, this study explores the fast-growing area of biochar production prediction. The paper demonstrates how recent a...
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Journal of Green Energy
International Journal of Green Energy 工程技术-能源与燃料
CiteScore
6.60
自引率
9.10%
发文量
112
审稿时长
3.7 months
期刊介绍: International Journal of Green Energy shares multidisciplinary research results in the fields of energy research, energy conversion, energy management, and energy conservation, with a particular interest in advanced, environmentally friendly energy technologies. We publish research that focuses on the forms and utilizations of energy that have no, minimal, or reduced impact on environment, economy and society.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信