利用深度学习提高大型粗模型的冲积洪水测绘分辨率

Cesar Ambrogi Ferreira do Lago, Jose Artur Teixeira Brasil, Marcus Nóbrega Gomes Junior, Eduardo Mario Mendiondo, Marcio H. Giacomoni
{"title":"利用深度学习提高大型粗模型的冲积洪水测绘分辨率","authors":"Cesar Ambrogi Ferreira do Lago, Jose Artur Teixeira Brasil, Marcus Nóbrega Gomes Junior, Eduardo Mario Mendiondo, Marcio H. Giacomoni","doi":"10.1080/02626667.2024.2329268","DOIUrl":null,"url":null,"abstract":"Deep Learning (DL) models are a promising complement to hydrodynamic models. However, the application of DL for detailed predictions on large domains has not yet been tested. We aim to narrow addre...","PeriodicalId":13036,"journal":{"name":"Hydrological Sciences Journal","volume":"20 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improving pluvial flood mapping resolution of large coarse models with deep learning\",\"authors\":\"Cesar Ambrogi Ferreira do Lago, Jose Artur Teixeira Brasil, Marcus Nóbrega Gomes Junior, Eduardo Mario Mendiondo, Marcio H. Giacomoni\",\"doi\":\"10.1080/02626667.2024.2329268\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Deep Learning (DL) models are a promising complement to hydrodynamic models. However, the application of DL for detailed predictions on large domains has not yet been tested. We aim to narrow addre...\",\"PeriodicalId\":13036,\"journal\":{\"name\":\"Hydrological Sciences Journal\",\"volume\":\"20 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Hydrological Sciences Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/02626667.2024.2329268\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hydrological Sciences Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/02626667.2024.2329268","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

深度学习(DL)模型是对流体力学模型的有力补充。然而,深度学习在大领域详细预测中的应用尚未经过测试。我们的目标是缩小DL的应用范围。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Improving pluvial flood mapping resolution of large coarse models with deep learning
Deep Learning (DL) models are a promising complement to hydrodynamic models. However, the application of DL for detailed predictions on large domains has not yet been tested. We aim to narrow addre...
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信