NIHAT TOSUN, SLEMAN YAHYA RASUL, AYBARS MAHMAT, GUL TOSUN
{"title":"用纳米切削液和 MQL 提高 6061 铝合金的铣削性能","authors":"NIHAT TOSUN, SLEMAN YAHYA RASUL, AYBARS MAHMAT, GUL TOSUN","doi":"10.1142/s0218625x24500586","DOIUrl":null,"url":null,"abstract":"<p>During the machining of aluminum alloys, the adhesion of chips to the tool affects the performance characteristics. Today, different cooling systems are used to eliminate these negativities. In this study, the effects of end milling using HSS and carbide cutting tools of 6061-T6 aluminum alloy on surface roughness, chip thickness ratio and tool wear were examined using different cooling techniques (dry, minimum quantity lubrication (MQL) and nanocutting fluid). Different cutting speeds (180, 200, 220 m/min) and different feed rates (0.05, 0.06, 0.07 mm/rev) were used in the experiments. According to experimental findings, tool wear and surface roughness decreased at low cutting speed and feed rate by using nanocutting fluid with carbide cutting tools. It has been observed that the chip thickness ratio increases with high cutting speeds using nanocutting fluid and decreases with dry machining and high feed rates. The best milling performance of the aluminum alloy was achieved in experiments using carbide cutting tools and nanocutting fluid.</p>","PeriodicalId":22011,"journal":{"name":"Surface Review and Letters","volume":"21 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2023-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"ENHANCING MILLING PERFORMANCE OF 6061 ALUMINUM ALLOY WITH NANOCUTTING FLUID AND MQL\",\"authors\":\"NIHAT TOSUN, SLEMAN YAHYA RASUL, AYBARS MAHMAT, GUL TOSUN\",\"doi\":\"10.1142/s0218625x24500586\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>During the machining of aluminum alloys, the adhesion of chips to the tool affects the performance characteristics. Today, different cooling systems are used to eliminate these negativities. In this study, the effects of end milling using HSS and carbide cutting tools of 6061-T6 aluminum alloy on surface roughness, chip thickness ratio and tool wear were examined using different cooling techniques (dry, minimum quantity lubrication (MQL) and nanocutting fluid). Different cutting speeds (180, 200, 220 m/min) and different feed rates (0.05, 0.06, 0.07 mm/rev) were used in the experiments. According to experimental findings, tool wear and surface roughness decreased at low cutting speed and feed rate by using nanocutting fluid with carbide cutting tools. It has been observed that the chip thickness ratio increases with high cutting speeds using nanocutting fluid and decreases with dry machining and high feed rates. The best milling performance of the aluminum alloy was achieved in experiments using carbide cutting tools and nanocutting fluid.</p>\",\"PeriodicalId\":22011,\"journal\":{\"name\":\"Surface Review and Letters\",\"volume\":\"21 1\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2023-12-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Surface Review and Letters\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1142/s0218625x24500586\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Surface Review and Letters","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1142/s0218625x24500586","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
ENHANCING MILLING PERFORMANCE OF 6061 ALUMINUM ALLOY WITH NANOCUTTING FLUID AND MQL
During the machining of aluminum alloys, the adhesion of chips to the tool affects the performance characteristics. Today, different cooling systems are used to eliminate these negativities. In this study, the effects of end milling using HSS and carbide cutting tools of 6061-T6 aluminum alloy on surface roughness, chip thickness ratio and tool wear were examined using different cooling techniques (dry, minimum quantity lubrication (MQL) and nanocutting fluid). Different cutting speeds (180, 200, 220 m/min) and different feed rates (0.05, 0.06, 0.07 mm/rev) were used in the experiments. According to experimental findings, tool wear and surface roughness decreased at low cutting speed and feed rate by using nanocutting fluid with carbide cutting tools. It has been observed that the chip thickness ratio increases with high cutting speeds using nanocutting fluid and decreases with dry machining and high feed rates. The best milling performance of the aluminum alloy was achieved in experiments using carbide cutting tools and nanocutting fluid.
期刊介绍:
This international journal is devoted to the elucidation of properties and processes that occur at the boundaries of materials. The scope of the journal covers a broad range of topics in experimental and theoretical studies of surfaces and interfaces. Both the physical and chemical properties are covered. The journal also places emphasis on emerging areas of cross-disciplinary research where new phenomena occur due to the presence of a surface or an interface. Representative areas include surface and interface structures; their electronic, magnetic and optical properties; dynamics and energetics; chemical reactions at surfaces; phase transitions, reconstruction, roughening and melting; defects, nucleation and growth; and new surface and interface characterization techniques.