厄尔多斯-泰勒定理的多元扩展

IF 1.5 1区 数学 Q2 STATISTICS & PROBABILITY
Dimitris Lygkonis, Nikos Zygouras
{"title":"厄尔多斯-泰勒定理的多元扩展","authors":"Dimitris Lygkonis, Nikos Zygouras","doi":"10.1007/s00440-024-01267-3","DOIUrl":null,"url":null,"abstract":"<p>The Erdős–Taylor theorem (Acta Math Acad Sci Hungar, 1960) states that if <span>\\(\\textsf{L}_N\\)</span> is the local time at zero, up to time 2<i>N</i>, of a two-dimensional simple, symmetric random walk, then <span>\\(\\tfrac{\\pi }{\\log N} \\,\\textsf{L}_N\\)</span> converges in distribution to an exponential random variable with parameter one. This can be equivalently stated in terms of the total collision time of two independent simple random walks on the plane. More precisely, if <span>\\(\\textsf{L}_N^{(1,2)}=\\sum _{n=1}^N \\mathbb {1}_{\\{S_n^{(1)}= S_n^{(2)}\\}}\\)</span>, then <span>\\(\\tfrac{\\pi }{\\log N}\\, \\textsf{L}^{(1,2)}_N\\)</span> converges in distribution to an exponential random variable of parameter one. We prove that for every <span>\\(h \\geqslant 3\\)</span>, the family <span>\\( \\big \\{ \\frac{\\pi }{\\log N} \\,\\textsf{L}_N^{(i,j)} \\big \\}_{1\\leqslant i&lt;j\\leqslant h}\\)</span>, of logarithmically rescaled, two-body collision local times between <i>h</i> independent simple, symmetric random walks on the plane converges jointly to a vector of independent exponential random variables with parameter one, thus providing a multivariate version of the Erdős–Taylor theorem. We also discuss connections to directed polymers in random environments.</p>","PeriodicalId":20527,"journal":{"name":"Probability Theory and Related Fields","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2024-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A multivariate extension of the Erdős–Taylor theorem\",\"authors\":\"Dimitris Lygkonis, Nikos Zygouras\",\"doi\":\"10.1007/s00440-024-01267-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The Erdős–Taylor theorem (Acta Math Acad Sci Hungar, 1960) states that if <span>\\\\(\\\\textsf{L}_N\\\\)</span> is the local time at zero, up to time 2<i>N</i>, of a two-dimensional simple, symmetric random walk, then <span>\\\\(\\\\tfrac{\\\\pi }{\\\\log N} \\\\,\\\\textsf{L}_N\\\\)</span> converges in distribution to an exponential random variable with parameter one. This can be equivalently stated in terms of the total collision time of two independent simple random walks on the plane. More precisely, if <span>\\\\(\\\\textsf{L}_N^{(1,2)}=\\\\sum _{n=1}^N \\\\mathbb {1}_{\\\\{S_n^{(1)}= S_n^{(2)}\\\\}}\\\\)</span>, then <span>\\\\(\\\\tfrac{\\\\pi }{\\\\log N}\\\\, \\\\textsf{L}^{(1,2)}_N\\\\)</span> converges in distribution to an exponential random variable of parameter one. We prove that for every <span>\\\\(h \\\\geqslant 3\\\\)</span>, the family <span>\\\\( \\\\big \\\\{ \\\\frac{\\\\pi }{\\\\log N} \\\\,\\\\textsf{L}_N^{(i,j)} \\\\big \\\\}_{1\\\\leqslant i&lt;j\\\\leqslant h}\\\\)</span>, of logarithmically rescaled, two-body collision local times between <i>h</i> independent simple, symmetric random walks on the plane converges jointly to a vector of independent exponential random variables with parameter one, thus providing a multivariate version of the Erdős–Taylor theorem. We also discuss connections to directed polymers in random environments.</p>\",\"PeriodicalId\":20527,\"journal\":{\"name\":\"Probability Theory and Related Fields\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-03-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Probability Theory and Related Fields\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s00440-024-01267-3\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Probability Theory and Related Fields","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00440-024-01267-3","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

摘要

厄多斯-泰勒定理(Acta Math Acad Sci Hungar, 1960)指出,如果 \(textsf{L}_N\) 是二维简单对称随机游走的零点到时间 2N 的局部时间,那么 \(\tfrac\pi }\{log N} \,\textsf{L}_N\)在分布上收敛于参数为一的指数随机变量。这可以等价地用平面上两个独立简单随机行走的总碰撞时间来表示。更准确地说,如果 \(\textsf{L}_N^{(1,2)}=\sum _{n=1}^N \mathbb {1}_{\{S_n^{(1)}= S_n^{(2)}\}}), 那么 \(\tfrac\pi }{log N}\, \textsf{L}^{(1,2)}_N\) 在分布上收敛于参数为一的指数型随机变量。我们证明,对于每一个(h ),族( ( \big \{ \frac\pi }{\log N}\,\textsf{L}^{(1,2}_N} )的分布都收敛于参数为一的指数随机变量。\平面上 h 个独立的简单、对称随机游走之间的对数重标的、两体碰撞局部时间的族共同收敛于参数为 1 的独立指数随机变量向量,从而提供了厄尔多斯-泰勒定理的多变量版本。我们还讨论了与随机环境中的有向聚合物的联系。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

A multivariate extension of the Erdős–Taylor theorem

A multivariate extension of the Erdős–Taylor theorem

The Erdős–Taylor theorem (Acta Math Acad Sci Hungar, 1960) states that if \(\textsf{L}_N\) is the local time at zero, up to time 2N, of a two-dimensional simple, symmetric random walk, then \(\tfrac{\pi }{\log N} \,\textsf{L}_N\) converges in distribution to an exponential random variable with parameter one. This can be equivalently stated in terms of the total collision time of two independent simple random walks on the plane. More precisely, if \(\textsf{L}_N^{(1,2)}=\sum _{n=1}^N \mathbb {1}_{\{S_n^{(1)}= S_n^{(2)}\}}\), then \(\tfrac{\pi }{\log N}\, \textsf{L}^{(1,2)}_N\) converges in distribution to an exponential random variable of parameter one. We prove that for every \(h \geqslant 3\), the family \( \big \{ \frac{\pi }{\log N} \,\textsf{L}_N^{(i,j)} \big \}_{1\leqslant i<j\leqslant h}\), of logarithmically rescaled, two-body collision local times between h independent simple, symmetric random walks on the plane converges jointly to a vector of independent exponential random variables with parameter one, thus providing a multivariate version of the Erdős–Taylor theorem. We also discuss connections to directed polymers in random environments.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Probability Theory and Related Fields
Probability Theory and Related Fields 数学-统计学与概率论
CiteScore
3.70
自引率
5.00%
发文量
71
审稿时长
6-12 weeks
期刊介绍: Probability Theory and Related Fields publishes research papers in modern probability theory and its various fields of application. Thus, subjects of interest include: mathematical statistical physics, mathematical statistics, mathematical biology, theoretical computer science, and applications of probability theory to other areas of mathematics such as combinatorics, analysis, ergodic theory and geometry. Survey papers on emerging areas of importance may be considered for publication. The main languages of publication are English, French and German.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信