亚音速状态下的 Tollmien-Schlichting 波

IF 1.5 1区 数学 Q1 MATHEMATICS
Nader Masmoudi, Yuxi Wang, Di Wu, Zhifei Zhang
{"title":"亚音速状态下的 Tollmien-Schlichting 波","authors":"Nader Masmoudi, Yuxi Wang, Di Wu, Zhifei Zhang","doi":"10.1112/plms.12588","DOIUrl":null,"url":null,"abstract":"The Tollmien–Schlichting (T-S) waves play a key role in the early stages of boundary layer transition. In a breakthrough work, Grenier, Guo, and Nguyen gave the first rigorous construction of the T-S waves of temporal mode for the incompressible fluid. Yang and Zhang recently made an important contribution by constructing the compressible T-S waves of temporal mode for certain boundary layer profiles with Mach number <mjx-container aria-label=\"m less than StartFraction 1 Over StartRoot 3 EndRoot EndFraction\" ctxtmenu_counter=\"0\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" role=\"application\" sre-explorer- style=\"font-size: 103%; position: relative;\" tabindex=\"0\"><mjx-math aria-hidden=\"true\"><mjx-semantics><mjx-mrow data-semantic-children=\"0,5\" data-semantic-content=\"1\" data-semantic- data-semantic-role=\"inequality\" data-semantic-speech=\"m less than StartFraction 1 Over StartRoot 3 EndRoot EndFraction\" data-semantic-type=\"relseq\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"6\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c></mjx-c></mjx-mi><mjx-mo data-semantic- data-semantic-operator=\"relseq,&lt;\" data-semantic-parent=\"6\" data-semantic-role=\"inequality\" data-semantic-type=\"relation\" rspace=\"5\" space=\"5\"><mjx-c></mjx-c></mjx-mo><mjx-mfrac data-semantic-children=\"2,4\" data-semantic- data-semantic-parent=\"6\" data-semantic-role=\"division\" data-semantic-type=\"fraction\"><mjx-frac><mjx-num><mjx-nstrut></mjx-nstrut><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"5\" data-semantic-role=\"integer\" data-semantic-type=\"number\" size=\"s\"><mjx-c></mjx-c></mjx-mn></mjx-num><mjx-dbox><mjx-dtable><mjx-line></mjx-line><mjx-row><mjx-den><mjx-dstrut></mjx-dstrut><mjx-msqrt data-semantic-children=\"3\" data-semantic- data-semantic-parent=\"5\" data-semantic-role=\"unknown\" data-semantic-type=\"sqrt\" size=\"s\"><mjx-sqrt><mjx-surd><mjx-mo><mjx-c></mjx-c></mjx-mo></mjx-surd><mjx-box style=\"padding-top: 0.164em;\"><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"4\" data-semantic-role=\"integer\" data-semantic-type=\"number\"><mjx-c></mjx-c></mjx-mn></mjx-box></mjx-sqrt></mjx-msqrt></mjx-den></mjx-row></mjx-dtable></mjx-dbox></mjx-frac></mjx-mfrac></mjx-mrow></mjx-semantics></mjx-math><mjx-assistive-mml aria-hidden=\"true\" display=\"inline\" unselectable=\"on\"><math altimg=\"/cms/asset/b1bd1e98-17e2-46e4-980c-ac65e953555e/plms12588-math-0001.png\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><semantics><mrow data-semantic-=\"\" data-semantic-children=\"0,5\" data-semantic-content=\"1\" data-semantic-role=\"inequality\" data-semantic-speech=\"m less than StartFraction 1 Over StartRoot 3 EndRoot EndFraction\" data-semantic-type=\"relseq\"><mi data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic-parent=\"6\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\">m</mi><mo data-semantic-=\"\" data-semantic-operator=\"relseq,&lt;\" data-semantic-parent=\"6\" data-semantic-role=\"inequality\" data-semantic-type=\"relation\">&lt;</mo><mfrac data-semantic-=\"\" data-semantic-children=\"2,4\" data-semantic-parent=\"6\" data-semantic-role=\"division\" data-semantic-type=\"fraction\"><mn data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic-parent=\"5\" data-semantic-role=\"integer\" data-semantic-type=\"number\">1</mn><msqrt data-semantic-=\"\" data-semantic-children=\"3\" data-semantic-parent=\"5\" data-semantic-role=\"unknown\" data-semantic-type=\"sqrt\"><mn data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic-parent=\"4\" data-semantic-role=\"integer\" data-semantic-type=\"number\">3</mn></msqrt></mfrac></mrow>$m&amp;lt;\\frac{1}{\\sqrt 3}$</annotation></semantics></math></mjx-assistive-mml></mjx-container>. In this paper, we construct the T-S waves of both temporal mode and spatial mode to the linearized compressible Navier–Stokes system around the boundary layer flow in the whole subsonic regime <mjx-container aria-label=\"m less than 1\" ctxtmenu_counter=\"1\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" role=\"application\" sre-explorer- style=\"font-size: 103%; position: relative;\" tabindex=\"0\"><mjx-math aria-hidden=\"true\"><mjx-semantics><mjx-mrow data-semantic-children=\"0,2\" data-semantic-content=\"1\" data-semantic- data-semantic-role=\"inequality\" data-semantic-speech=\"m less than 1\" data-semantic-type=\"relseq\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"3\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c></mjx-c></mjx-mi><mjx-mo data-semantic- data-semantic-operator=\"relseq,&lt;\" data-semantic-parent=\"3\" data-semantic-role=\"inequality\" data-semantic-type=\"relation\" rspace=\"5\" space=\"5\"><mjx-c></mjx-c></mjx-mo><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"3\" data-semantic-role=\"integer\" data-semantic-type=\"number\"><mjx-c></mjx-c></mjx-mn></mjx-mrow></mjx-semantics></mjx-math><mjx-assistive-mml aria-hidden=\"true\" display=\"inline\" unselectable=\"on\"><math altimg=\"/cms/asset/c911aa9e-ab7e-499f-b059-ff406318d30e/plms12588-math-0002.png\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><semantics><mrow data-semantic-=\"\" data-semantic-children=\"0,2\" data-semantic-content=\"1\" data-semantic-role=\"inequality\" data-semantic-speech=\"m less than 1\" data-semantic-type=\"relseq\"><mi data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic-parent=\"3\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\">m</mi><mo data-semantic-=\"\" data-semantic-operator=\"relseq,&lt;\" data-semantic-parent=\"3\" data-semantic-role=\"inequality\" data-semantic-type=\"relation\">&lt;</mo><mn data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic-parent=\"3\" data-semantic-role=\"integer\" data-semantic-type=\"number\">1</mn></mrow>$m&amp;lt;1$</annotation></semantics></math></mjx-assistive-mml></mjx-container>, including the Blasius profile. Our approach is based on a novel iteration scheme between the quasi-incompressible and quasi-compressible systems, with a key ingredient being the solution of an Orr–Sommerfeld-type equation using a new Airy–Airy–Rayleigh iteration instead of Rayleigh–Airy iteration introduced by Grenier, Guo, and Nguyen. We believe that the method developed in this work can be applied in solving other related problems for subsonic flows.","PeriodicalId":49667,"journal":{"name":"Proceedings of the London Mathematical Society","volume":"56 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tollmien–Schlichting waves in the subsonic regime\",\"authors\":\"Nader Masmoudi, Yuxi Wang, Di Wu, Zhifei Zhang\",\"doi\":\"10.1112/plms.12588\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Tollmien–Schlichting (T-S) waves play a key role in the early stages of boundary layer transition. In a breakthrough work, Grenier, Guo, and Nguyen gave the first rigorous construction of the T-S waves of temporal mode for the incompressible fluid. Yang and Zhang recently made an important contribution by constructing the compressible T-S waves of temporal mode for certain boundary layer profiles with Mach number <mjx-container aria-label=\\\"m less than StartFraction 1 Over StartRoot 3 EndRoot EndFraction\\\" ctxtmenu_counter=\\\"0\\\" ctxtmenu_oldtabindex=\\\"1\\\" jax=\\\"CHTML\\\" role=\\\"application\\\" sre-explorer- style=\\\"font-size: 103%; position: relative;\\\" tabindex=\\\"0\\\"><mjx-math aria-hidden=\\\"true\\\"><mjx-semantics><mjx-mrow data-semantic-children=\\\"0,5\\\" data-semantic-content=\\\"1\\\" data-semantic- data-semantic-role=\\\"inequality\\\" data-semantic-speech=\\\"m less than StartFraction 1 Over StartRoot 3 EndRoot EndFraction\\\" data-semantic-type=\\\"relseq\\\"><mjx-mi data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"italic\\\" data-semantic- data-semantic-parent=\\\"6\\\" data-semantic-role=\\\"latinletter\\\" data-semantic-type=\\\"identifier\\\"><mjx-c></mjx-c></mjx-mi><mjx-mo data-semantic- data-semantic-operator=\\\"relseq,&lt;\\\" data-semantic-parent=\\\"6\\\" data-semantic-role=\\\"inequality\\\" data-semantic-type=\\\"relation\\\" rspace=\\\"5\\\" space=\\\"5\\\"><mjx-c></mjx-c></mjx-mo><mjx-mfrac data-semantic-children=\\\"2,4\\\" data-semantic- data-semantic-parent=\\\"6\\\" data-semantic-role=\\\"division\\\" data-semantic-type=\\\"fraction\\\"><mjx-frac><mjx-num><mjx-nstrut></mjx-nstrut><mjx-mn data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"normal\\\" data-semantic- data-semantic-parent=\\\"5\\\" data-semantic-role=\\\"integer\\\" data-semantic-type=\\\"number\\\" size=\\\"s\\\"><mjx-c></mjx-c></mjx-mn></mjx-num><mjx-dbox><mjx-dtable><mjx-line></mjx-line><mjx-row><mjx-den><mjx-dstrut></mjx-dstrut><mjx-msqrt data-semantic-children=\\\"3\\\" data-semantic- data-semantic-parent=\\\"5\\\" data-semantic-role=\\\"unknown\\\" data-semantic-type=\\\"sqrt\\\" size=\\\"s\\\"><mjx-sqrt><mjx-surd><mjx-mo><mjx-c></mjx-c></mjx-mo></mjx-surd><mjx-box style=\\\"padding-top: 0.164em;\\\"><mjx-mn data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"normal\\\" data-semantic- data-semantic-parent=\\\"4\\\" data-semantic-role=\\\"integer\\\" data-semantic-type=\\\"number\\\"><mjx-c></mjx-c></mjx-mn></mjx-box></mjx-sqrt></mjx-msqrt></mjx-den></mjx-row></mjx-dtable></mjx-dbox></mjx-frac></mjx-mfrac></mjx-mrow></mjx-semantics></mjx-math><mjx-assistive-mml aria-hidden=\\\"true\\\" display=\\\"inline\\\" unselectable=\\\"on\\\"><math altimg=\\\"/cms/asset/b1bd1e98-17e2-46e4-980c-ac65e953555e/plms12588-math-0001.png\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><semantics><mrow data-semantic-=\\\"\\\" data-semantic-children=\\\"0,5\\\" data-semantic-content=\\\"1\\\" data-semantic-role=\\\"inequality\\\" data-semantic-speech=\\\"m less than StartFraction 1 Over StartRoot 3 EndRoot EndFraction\\\" data-semantic-type=\\\"relseq\\\"><mi data-semantic-=\\\"\\\" data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"italic\\\" data-semantic-parent=\\\"6\\\" data-semantic-role=\\\"latinletter\\\" data-semantic-type=\\\"identifier\\\">m</mi><mo data-semantic-=\\\"\\\" data-semantic-operator=\\\"relseq,&lt;\\\" data-semantic-parent=\\\"6\\\" data-semantic-role=\\\"inequality\\\" data-semantic-type=\\\"relation\\\">&lt;</mo><mfrac data-semantic-=\\\"\\\" data-semantic-children=\\\"2,4\\\" data-semantic-parent=\\\"6\\\" data-semantic-role=\\\"division\\\" data-semantic-type=\\\"fraction\\\"><mn data-semantic-=\\\"\\\" data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"normal\\\" data-semantic-parent=\\\"5\\\" data-semantic-role=\\\"integer\\\" data-semantic-type=\\\"number\\\">1</mn><msqrt data-semantic-=\\\"\\\" data-semantic-children=\\\"3\\\" data-semantic-parent=\\\"5\\\" data-semantic-role=\\\"unknown\\\" data-semantic-type=\\\"sqrt\\\"><mn data-semantic-=\\\"\\\" data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"normal\\\" data-semantic-parent=\\\"4\\\" data-semantic-role=\\\"integer\\\" data-semantic-type=\\\"number\\\">3</mn></msqrt></mfrac></mrow>$m&amp;lt;\\\\frac{1}{\\\\sqrt 3}$</annotation></semantics></math></mjx-assistive-mml></mjx-container>. In this paper, we construct the T-S waves of both temporal mode and spatial mode to the linearized compressible Navier–Stokes system around the boundary layer flow in the whole subsonic regime <mjx-container aria-label=\\\"m less than 1\\\" ctxtmenu_counter=\\\"1\\\" ctxtmenu_oldtabindex=\\\"1\\\" jax=\\\"CHTML\\\" role=\\\"application\\\" sre-explorer- style=\\\"font-size: 103%; position: relative;\\\" tabindex=\\\"0\\\"><mjx-math aria-hidden=\\\"true\\\"><mjx-semantics><mjx-mrow data-semantic-children=\\\"0,2\\\" data-semantic-content=\\\"1\\\" data-semantic- data-semantic-role=\\\"inequality\\\" data-semantic-speech=\\\"m less than 1\\\" data-semantic-type=\\\"relseq\\\"><mjx-mi data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"italic\\\" data-semantic- data-semantic-parent=\\\"3\\\" data-semantic-role=\\\"latinletter\\\" data-semantic-type=\\\"identifier\\\"><mjx-c></mjx-c></mjx-mi><mjx-mo data-semantic- data-semantic-operator=\\\"relseq,&lt;\\\" data-semantic-parent=\\\"3\\\" data-semantic-role=\\\"inequality\\\" data-semantic-type=\\\"relation\\\" rspace=\\\"5\\\" space=\\\"5\\\"><mjx-c></mjx-c></mjx-mo><mjx-mn data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"normal\\\" data-semantic- data-semantic-parent=\\\"3\\\" data-semantic-role=\\\"integer\\\" data-semantic-type=\\\"number\\\"><mjx-c></mjx-c></mjx-mn></mjx-mrow></mjx-semantics></mjx-math><mjx-assistive-mml aria-hidden=\\\"true\\\" display=\\\"inline\\\" unselectable=\\\"on\\\"><math altimg=\\\"/cms/asset/c911aa9e-ab7e-499f-b059-ff406318d30e/plms12588-math-0002.png\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><semantics><mrow data-semantic-=\\\"\\\" data-semantic-children=\\\"0,2\\\" data-semantic-content=\\\"1\\\" data-semantic-role=\\\"inequality\\\" data-semantic-speech=\\\"m less than 1\\\" data-semantic-type=\\\"relseq\\\"><mi data-semantic-=\\\"\\\" data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"italic\\\" data-semantic-parent=\\\"3\\\" data-semantic-role=\\\"latinletter\\\" data-semantic-type=\\\"identifier\\\">m</mi><mo data-semantic-=\\\"\\\" data-semantic-operator=\\\"relseq,&lt;\\\" data-semantic-parent=\\\"3\\\" data-semantic-role=\\\"inequality\\\" data-semantic-type=\\\"relation\\\">&lt;</mo><mn data-semantic-=\\\"\\\" data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"normal\\\" data-semantic-parent=\\\"3\\\" data-semantic-role=\\\"integer\\\" data-semantic-type=\\\"number\\\">1</mn></mrow>$m&amp;lt;1$</annotation></semantics></math></mjx-assistive-mml></mjx-container>, including the Blasius profile. Our approach is based on a novel iteration scheme between the quasi-incompressible and quasi-compressible systems, with a key ingredient being the solution of an Orr–Sommerfeld-type equation using a new Airy–Airy–Rayleigh iteration instead of Rayleigh–Airy iteration introduced by Grenier, Guo, and Nguyen. We believe that the method developed in this work can be applied in solving other related problems for subsonic flows.\",\"PeriodicalId\":49667,\"journal\":{\"name\":\"Proceedings of the London Mathematical Society\",\"volume\":\"56 1\",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-03-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the London Mathematical Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1112/plms.12588\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the London Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1112/plms.12588","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

Tollmien-Schlichting (T-S) 波在边界层过渡的早期阶段起着关键作用。在一项突破性工作中,Grenier、Guo 和 Nguyen 首次严格构建了不可压缩流体的时模 T-S 波。杨和张最近做出了重要贡献,构建了马赫数为 m<13$m&lt;\frac{1}\{sqrt 3}$的某些边界层剖面的可压缩 T-S 波时模。在本文中,我们围绕整个亚音速系统 m<1$m&lt;1$ 的边界层流动,包括 Blasius 剖面,构建了线性化可压缩 Navier-Stokes 系统的时模和空模 T-S 波。我们的方法基于准不可压缩和准可压缩系统之间的一种新型迭代方案,其中一个关键要素是使用一种新的 Airy-Airy-Rayleigh 迭代而不是 Grenier、Guo 和 Nguyen 引入的 Rayleigh-Airy 迭代来解决 Orr-Sommerfeld 型方程。我们相信,这项工作中开发的方法可用于解决亚音速流动的其他相关问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Tollmien–Schlichting waves in the subsonic regime
The Tollmien–Schlichting (T-S) waves play a key role in the early stages of boundary layer transition. In a breakthrough work, Grenier, Guo, and Nguyen gave the first rigorous construction of the T-S waves of temporal mode for the incompressible fluid. Yang and Zhang recently made an important contribution by constructing the compressible T-S waves of temporal mode for certain boundary layer profiles with Mach number . In this paper, we construct the T-S waves of both temporal mode and spatial mode to the linearized compressible Navier–Stokes system around the boundary layer flow in the whole subsonic regime , including the Blasius profile. Our approach is based on a novel iteration scheme between the quasi-incompressible and quasi-compressible systems, with a key ingredient being the solution of an Orr–Sommerfeld-type equation using a new Airy–Airy–Rayleigh iteration instead of Rayleigh–Airy iteration introduced by Grenier, Guo, and Nguyen. We believe that the method developed in this work can be applied in solving other related problems for subsonic flows.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.90
自引率
0.00%
发文量
82
审稿时长
6-12 weeks
期刊介绍: The Proceedings of the London Mathematical Society is the flagship journal of the LMS. It publishes articles of the highest quality and significance across a broad range of mathematics. There are no page length restrictions for submitted papers. The Proceedings has its own Editorial Board separate from that of the Journal, Bulletin and Transactions of the LMS.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信