具有 GL(2) 系数的双线性组合和 d3 的分布指数

IF 1.5 1区 数学 Q1 MATHEMATICS
Prahlad Sharma
{"title":"具有 GL(2) 系数的双线性组合和 d3 的分布指数","authors":"Prahlad Sharma","doi":"10.1112/plms.12589","DOIUrl":null,"url":null,"abstract":"We obtain the exponent of distribution <mjx-container aria-label=\"1 divided by 2 plus 1 divided by 30\" ctxtmenu_counter=\"2\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" role=\"application\" sre-explorer- style=\"font-size: 103%; position: relative;\" tabindex=\"0\"><mjx-math aria-hidden=\"true\"><mjx-semantics><mjx-mrow data-semantic-children=\"7,9\" data-semantic-content=\"3\" data-semantic- data-semantic-role=\"addition\" data-semantic-speech=\"1 divided by 2 plus 1 divided by 30\" data-semantic-type=\"infixop\"><mjx-mrow data-semantic-children=\"0,2\" data-semantic-content=\"1\" data-semantic- data-semantic-parent=\"8\" data-semantic-role=\"division\" data-semantic-type=\"infixop\"><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"7\" data-semantic-role=\"integer\" data-semantic-type=\"number\"><mjx-c></mjx-c></mjx-mn><mjx-mo data-semantic- data-semantic-operator=\"infixop,/\" data-semantic-parent=\"7\" data-semantic-role=\"division\" data-semantic-type=\"operator\" rspace=\"1\" space=\"1\"><mjx-c></mjx-c></mjx-mo><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"7\" data-semantic-role=\"integer\" data-semantic-type=\"number\"><mjx-c></mjx-c></mjx-mn></mjx-mrow><mjx-mo data-semantic- data-semantic-operator=\"infixop,+\" data-semantic-parent=\"8\" data-semantic-role=\"addition\" data-semantic-type=\"operator\" rspace=\"4\" space=\"4\"><mjx-c></mjx-c></mjx-mo><mjx-mrow data-semantic-children=\"4,6\" data-semantic-content=\"5\" data-semantic- data-semantic-parent=\"8\" data-semantic-role=\"division\" data-semantic-type=\"infixop\"><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"9\" data-semantic-role=\"integer\" data-semantic-type=\"number\"><mjx-c></mjx-c></mjx-mn><mjx-mo data-semantic- data-semantic-operator=\"infixop,/\" data-semantic-parent=\"9\" data-semantic-role=\"division\" data-semantic-type=\"operator\" rspace=\"1\" space=\"1\"><mjx-c></mjx-c></mjx-mo><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"9\" data-semantic-role=\"integer\" data-semantic-type=\"number\"><mjx-c></mjx-c><mjx-c></mjx-c></mjx-mn></mjx-mrow></mjx-mrow></mjx-semantics></mjx-math><mjx-assistive-mml aria-hidden=\"true\" display=\"inline\" unselectable=\"on\"><math altimg=\"/cms/asset/af700ab1-c439-4943-bca5-0381bd669efc/plms12589-math-0005.png\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><semantics><mrow data-semantic-=\"\" data-semantic-children=\"7,9\" data-semantic-content=\"3\" data-semantic-role=\"addition\" data-semantic-speech=\"1 divided by 2 plus 1 divided by 30\" data-semantic-type=\"infixop\"><mrow data-semantic-=\"\" data-semantic-children=\"0,2\" data-semantic-content=\"1\" data-semantic-parent=\"8\" data-semantic-role=\"division\" data-semantic-type=\"infixop\"><mn data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic-parent=\"7\" data-semantic-role=\"integer\" data-semantic-type=\"number\">1</mn><mo data-semantic-=\"\" data-semantic-operator=\"infixop,/\" data-semantic-parent=\"7\" data-semantic-role=\"division\" data-semantic-type=\"operator\">/</mo><mn data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic-parent=\"7\" data-semantic-role=\"integer\" data-semantic-type=\"number\">2</mn></mrow><mo data-semantic-=\"\" data-semantic-operator=\"infixop,+\" data-semantic-parent=\"8\" data-semantic-role=\"addition\" data-semantic-type=\"operator\">+</mo><mrow data-semantic-=\"\" data-semantic-children=\"4,6\" data-semantic-content=\"5\" data-semantic-parent=\"8\" data-semantic-role=\"division\" data-semantic-type=\"infixop\"><mn data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic-parent=\"9\" data-semantic-role=\"integer\" data-semantic-type=\"number\">1</mn><mo data-semantic-=\"\" data-semantic-operator=\"infixop,/\" data-semantic-parent=\"9\" data-semantic-role=\"division\" data-semantic-type=\"operator\">/</mo><mn data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic-parent=\"9\" data-semantic-role=\"integer\" data-semantic-type=\"number\">30</mn></mrow></mrow>$1/2+1/30$</annotation></semantics></math></mjx-assistive-mml></mjx-container> for the ternary divisor function <mjx-container aria-label=\"d 3\" ctxtmenu_counter=\"3\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" role=\"application\" sre-explorer- style=\"font-size: 103%; position: relative;\" tabindex=\"0\"><mjx-math aria-hidden=\"true\"><mjx-semantics><mjx-msub data-semantic-children=\"0,1\" data-semantic- data-semantic-role=\"latinletter\" data-semantic-speech=\"d 3\" data-semantic-type=\"subscript\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c></mjx-c></mjx-mi><mjx-script style=\"vertical-align: -0.15em;\"><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"2\" data-semantic-role=\"integer\" data-semantic-type=\"number\" size=\"s\"><mjx-c></mjx-c></mjx-mn></mjx-script></mjx-msub></mjx-semantics></mjx-math><mjx-assistive-mml aria-hidden=\"true\" display=\"inline\" unselectable=\"on\"><math altimg=\"/cms/asset/dab932c8-c2bf-41b1-bdff-665fc63b9655/plms12589-math-0006.png\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><semantics><msub data-semantic-=\"\" data-semantic-children=\"0,1\" data-semantic-role=\"latinletter\" data-semantic-speech=\"d 3\" data-semantic-type=\"subscript\"><mi data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic-parent=\"2\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\">d</mi><mn data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic-parent=\"2\" data-semantic-role=\"integer\" data-semantic-type=\"number\">3</mn></msub>$d_3$</annotation></semantics></math></mjx-assistive-mml></mjx-container> to square-free and prime power moduli, improving the previous results of Fouvry–Kowalski–Michel, Heath-Brown and Friedlander–Iwaniec. The key input is certain estimates on bilinear sums with <mjx-container aria-label=\"upper G upper L left parenthesis 2 right parenthesis\" ctxtmenu_counter=\"4\" ctxtmenu_oldtabindex=\"1\" jax=\"CHTML\" role=\"application\" sre-explorer- style=\"font-size: 103%; position: relative;\" tabindex=\"0\"><mjx-math aria-hidden=\"true\"><mjx-semantics><mjx-mrow data-semantic-annotation=\"clearspeak:unit\" data-semantic-children=\"0,7\" data-semantic-content=\"8\" data-semantic- data-semantic-role=\"implicit\" data-semantic-speech=\"upper G upper L left parenthesis 2 right parenthesis\" data-semantic-type=\"infixop\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-parent=\"9\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\"><mjx-c></mjx-c></mjx-mi><mjx-mo data-semantic-added=\"true\" data-semantic- data-semantic-operator=\"infixop,⁢\" data-semantic-parent=\"9\" data-semantic-role=\"multiplication\" data-semantic-type=\"operator\" style=\"margin-left: 0.056em; margin-right: 0.056em;\"><mjx-c></mjx-c></mjx-mo><mjx-mrow data-semantic-annotation=\"clearspeak:simple\" data-semantic-children=\"1,5\" data-semantic-content=\"6,1\" data-semantic- data-semantic-parent=\"9\" data-semantic-role=\"simple function\" data-semantic-type=\"appl\"><mjx-mi data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic- data-semantic-operator=\"appl\" data-semantic-parent=\"7\" data-semantic-role=\"simple function\" data-semantic-type=\"identifier\"><mjx-c></mjx-c></mjx-mi><mjx-mo data-semantic-added=\"true\" data-semantic- data-semantic-operator=\"appl\" data-semantic-parent=\"7\" data-semantic-role=\"application\" data-semantic-type=\"punctuation\" style=\"margin-left: 0.056em; margin-right: 0.056em;\"><mjx-c></mjx-c></mjx-mo><mjx-mrow data-semantic-children=\"3\" data-semantic-content=\"2,4\" data-semantic- data-semantic-parent=\"7\" data-semantic-role=\"leftright\" data-semantic-type=\"fenced\"><mjx-mo data-semantic- data-semantic-operator=\"fenced\" data-semantic-parent=\"5\" data-semantic-role=\"open\" data-semantic-type=\"fence\" style=\"margin-left: 0.056em; margin-right: 0.056em;\"><mjx-c></mjx-c></mjx-mo><mjx-mn data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic- data-semantic-parent=\"5\" data-semantic-role=\"integer\" data-semantic-type=\"number\"><mjx-c></mjx-c></mjx-mn><mjx-mo data-semantic- data-semantic-operator=\"fenced\" data-semantic-parent=\"5\" data-semantic-role=\"close\" data-semantic-type=\"fence\" style=\"margin-left: 0.056em; margin-right: 0.056em;\"><mjx-c></mjx-c></mjx-mo></mjx-mrow></mjx-mrow></mjx-mrow></mjx-semantics></mjx-math><mjx-assistive-mml aria-hidden=\"true\" display=\"inline\" unselectable=\"on\"><math altimg=\"/cms/asset/b8845506-b90d-441a-96e3-2a4a7fc9497b/plms12589-math-0007.png\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><semantics><mrow data-semantic-=\"\" data-semantic-annotation=\"clearspeak:unit\" data-semantic-children=\"0,7\" data-semantic-content=\"8\" data-semantic-role=\"implicit\" data-semantic-speech=\"upper G upper L left parenthesis 2 right parenthesis\" data-semantic-type=\"infixop\"><mi data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic-parent=\"9\" data-semantic-role=\"latinletter\" data-semantic-type=\"identifier\">G</mi><mo data-semantic-=\"\" data-semantic-added=\"true\" data-semantic-operator=\"infixop,⁢\" data-semantic-parent=\"9\" data-semantic-role=\"multiplication\" data-semantic-type=\"operator\">⁢</mo><mrow data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-children=\"1,5\" data-semantic-content=\"6,1\" data-semantic-parent=\"9\" data-semantic-role=\"simple function\" data-semantic-type=\"appl\"><mi data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"italic\" data-semantic-operator=\"appl\" data-semantic-parent=\"7\" data-semantic-role=\"simple function\" data-semantic-type=\"identifier\">L</mi><mo data-semantic-=\"\" data-semantic-added=\"true\" data-semantic-operator=\"appl\" data-semantic-parent=\"7\" data-semantic-role=\"application\" data-semantic-type=\"punctuation\">⁡</mo><mrow data-semantic-=\"\" data-semantic-children=\"3\" data-semantic-content=\"2,4\" data-semantic-parent=\"7\" data-semantic-role=\"leftright\" data-semantic-type=\"fenced\"><mo data-semantic-=\"\" data-semantic-operator=\"fenced\" data-semantic-parent=\"5\" data-semantic-role=\"open\" data-semantic-type=\"fence\" stretchy=\"false\">(</mo><mn data-semantic-=\"\" data-semantic-annotation=\"clearspeak:simple\" data-semantic-font=\"normal\" data-semantic-parent=\"5\" data-semantic-role=\"integer\" data-semantic-type=\"number\">2</mn><mo data-semantic-=\"\" data-semantic-operator=\"fenced\" data-semantic-parent=\"5\" data-semantic-role=\"close\" data-semantic-type=\"fence\" stretchy=\"false\">)</mo></mrow></mrow></mrow>$GL(2)$</annotation></semantics></math></mjx-assistive-mml></mjx-container> coefficients obtained using the delta symbol approach.","PeriodicalId":49667,"journal":{"name":"Proceedings of the London Mathematical Society","volume":"54 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bilinear sums with GL(2) coefficients and the exponent of distribution of d3\",\"authors\":\"Prahlad Sharma\",\"doi\":\"10.1112/plms.12589\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We obtain the exponent of distribution <mjx-container aria-label=\\\"1 divided by 2 plus 1 divided by 30\\\" ctxtmenu_counter=\\\"2\\\" ctxtmenu_oldtabindex=\\\"1\\\" jax=\\\"CHTML\\\" role=\\\"application\\\" sre-explorer- style=\\\"font-size: 103%; position: relative;\\\" tabindex=\\\"0\\\"><mjx-math aria-hidden=\\\"true\\\"><mjx-semantics><mjx-mrow data-semantic-children=\\\"7,9\\\" data-semantic-content=\\\"3\\\" data-semantic- data-semantic-role=\\\"addition\\\" data-semantic-speech=\\\"1 divided by 2 plus 1 divided by 30\\\" data-semantic-type=\\\"infixop\\\"><mjx-mrow data-semantic-children=\\\"0,2\\\" data-semantic-content=\\\"1\\\" data-semantic- data-semantic-parent=\\\"8\\\" data-semantic-role=\\\"division\\\" data-semantic-type=\\\"infixop\\\"><mjx-mn data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"normal\\\" data-semantic- data-semantic-parent=\\\"7\\\" data-semantic-role=\\\"integer\\\" data-semantic-type=\\\"number\\\"><mjx-c></mjx-c></mjx-mn><mjx-mo data-semantic- data-semantic-operator=\\\"infixop,/\\\" data-semantic-parent=\\\"7\\\" data-semantic-role=\\\"division\\\" data-semantic-type=\\\"operator\\\" rspace=\\\"1\\\" space=\\\"1\\\"><mjx-c></mjx-c></mjx-mo><mjx-mn data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"normal\\\" data-semantic- data-semantic-parent=\\\"7\\\" data-semantic-role=\\\"integer\\\" data-semantic-type=\\\"number\\\"><mjx-c></mjx-c></mjx-mn></mjx-mrow><mjx-mo data-semantic- data-semantic-operator=\\\"infixop,+\\\" data-semantic-parent=\\\"8\\\" data-semantic-role=\\\"addition\\\" data-semantic-type=\\\"operator\\\" rspace=\\\"4\\\" space=\\\"4\\\"><mjx-c></mjx-c></mjx-mo><mjx-mrow data-semantic-children=\\\"4,6\\\" data-semantic-content=\\\"5\\\" data-semantic- data-semantic-parent=\\\"8\\\" data-semantic-role=\\\"division\\\" data-semantic-type=\\\"infixop\\\"><mjx-mn data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"normal\\\" data-semantic- data-semantic-parent=\\\"9\\\" data-semantic-role=\\\"integer\\\" data-semantic-type=\\\"number\\\"><mjx-c></mjx-c></mjx-mn><mjx-mo data-semantic- data-semantic-operator=\\\"infixop,/\\\" data-semantic-parent=\\\"9\\\" data-semantic-role=\\\"division\\\" data-semantic-type=\\\"operator\\\" rspace=\\\"1\\\" space=\\\"1\\\"><mjx-c></mjx-c></mjx-mo><mjx-mn data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"normal\\\" data-semantic- data-semantic-parent=\\\"9\\\" data-semantic-role=\\\"integer\\\" data-semantic-type=\\\"number\\\"><mjx-c></mjx-c><mjx-c></mjx-c></mjx-mn></mjx-mrow></mjx-mrow></mjx-semantics></mjx-math><mjx-assistive-mml aria-hidden=\\\"true\\\" display=\\\"inline\\\" unselectable=\\\"on\\\"><math altimg=\\\"/cms/asset/af700ab1-c439-4943-bca5-0381bd669efc/plms12589-math-0005.png\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><semantics><mrow data-semantic-=\\\"\\\" data-semantic-children=\\\"7,9\\\" data-semantic-content=\\\"3\\\" data-semantic-role=\\\"addition\\\" data-semantic-speech=\\\"1 divided by 2 plus 1 divided by 30\\\" data-semantic-type=\\\"infixop\\\"><mrow data-semantic-=\\\"\\\" data-semantic-children=\\\"0,2\\\" data-semantic-content=\\\"1\\\" data-semantic-parent=\\\"8\\\" data-semantic-role=\\\"division\\\" data-semantic-type=\\\"infixop\\\"><mn data-semantic-=\\\"\\\" data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"normal\\\" data-semantic-parent=\\\"7\\\" data-semantic-role=\\\"integer\\\" data-semantic-type=\\\"number\\\">1</mn><mo data-semantic-=\\\"\\\" data-semantic-operator=\\\"infixop,/\\\" data-semantic-parent=\\\"7\\\" data-semantic-role=\\\"division\\\" data-semantic-type=\\\"operator\\\">/</mo><mn data-semantic-=\\\"\\\" data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"normal\\\" data-semantic-parent=\\\"7\\\" data-semantic-role=\\\"integer\\\" data-semantic-type=\\\"number\\\">2</mn></mrow><mo data-semantic-=\\\"\\\" data-semantic-operator=\\\"infixop,+\\\" data-semantic-parent=\\\"8\\\" data-semantic-role=\\\"addition\\\" data-semantic-type=\\\"operator\\\">+</mo><mrow data-semantic-=\\\"\\\" data-semantic-children=\\\"4,6\\\" data-semantic-content=\\\"5\\\" data-semantic-parent=\\\"8\\\" data-semantic-role=\\\"division\\\" data-semantic-type=\\\"infixop\\\"><mn data-semantic-=\\\"\\\" data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"normal\\\" data-semantic-parent=\\\"9\\\" data-semantic-role=\\\"integer\\\" data-semantic-type=\\\"number\\\">1</mn><mo data-semantic-=\\\"\\\" data-semantic-operator=\\\"infixop,/\\\" data-semantic-parent=\\\"9\\\" data-semantic-role=\\\"division\\\" data-semantic-type=\\\"operator\\\">/</mo><mn data-semantic-=\\\"\\\" data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"normal\\\" data-semantic-parent=\\\"9\\\" data-semantic-role=\\\"integer\\\" data-semantic-type=\\\"number\\\">30</mn></mrow></mrow>$1/2+1/30$</annotation></semantics></math></mjx-assistive-mml></mjx-container> for the ternary divisor function <mjx-container aria-label=\\\"d 3\\\" ctxtmenu_counter=\\\"3\\\" ctxtmenu_oldtabindex=\\\"1\\\" jax=\\\"CHTML\\\" role=\\\"application\\\" sre-explorer- style=\\\"font-size: 103%; position: relative;\\\" tabindex=\\\"0\\\"><mjx-math aria-hidden=\\\"true\\\"><mjx-semantics><mjx-msub data-semantic-children=\\\"0,1\\\" data-semantic- data-semantic-role=\\\"latinletter\\\" data-semantic-speech=\\\"d 3\\\" data-semantic-type=\\\"subscript\\\"><mjx-mi data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"italic\\\" data-semantic- data-semantic-parent=\\\"2\\\" data-semantic-role=\\\"latinletter\\\" data-semantic-type=\\\"identifier\\\"><mjx-c></mjx-c></mjx-mi><mjx-script style=\\\"vertical-align: -0.15em;\\\"><mjx-mn data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"normal\\\" data-semantic- data-semantic-parent=\\\"2\\\" data-semantic-role=\\\"integer\\\" data-semantic-type=\\\"number\\\" size=\\\"s\\\"><mjx-c></mjx-c></mjx-mn></mjx-script></mjx-msub></mjx-semantics></mjx-math><mjx-assistive-mml aria-hidden=\\\"true\\\" display=\\\"inline\\\" unselectable=\\\"on\\\"><math altimg=\\\"/cms/asset/dab932c8-c2bf-41b1-bdff-665fc63b9655/plms12589-math-0006.png\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><semantics><msub data-semantic-=\\\"\\\" data-semantic-children=\\\"0,1\\\" data-semantic-role=\\\"latinletter\\\" data-semantic-speech=\\\"d 3\\\" data-semantic-type=\\\"subscript\\\"><mi data-semantic-=\\\"\\\" data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"italic\\\" data-semantic-parent=\\\"2\\\" data-semantic-role=\\\"latinletter\\\" data-semantic-type=\\\"identifier\\\">d</mi><mn data-semantic-=\\\"\\\" data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"normal\\\" data-semantic-parent=\\\"2\\\" data-semantic-role=\\\"integer\\\" data-semantic-type=\\\"number\\\">3</mn></msub>$d_3$</annotation></semantics></math></mjx-assistive-mml></mjx-container> to square-free and prime power moduli, improving the previous results of Fouvry–Kowalski–Michel, Heath-Brown and Friedlander–Iwaniec. The key input is certain estimates on bilinear sums with <mjx-container aria-label=\\\"upper G upper L left parenthesis 2 right parenthesis\\\" ctxtmenu_counter=\\\"4\\\" ctxtmenu_oldtabindex=\\\"1\\\" jax=\\\"CHTML\\\" role=\\\"application\\\" sre-explorer- style=\\\"font-size: 103%; position: relative;\\\" tabindex=\\\"0\\\"><mjx-math aria-hidden=\\\"true\\\"><mjx-semantics><mjx-mrow data-semantic-annotation=\\\"clearspeak:unit\\\" data-semantic-children=\\\"0,7\\\" data-semantic-content=\\\"8\\\" data-semantic- data-semantic-role=\\\"implicit\\\" data-semantic-speech=\\\"upper G upper L left parenthesis 2 right parenthesis\\\" data-semantic-type=\\\"infixop\\\"><mjx-mi data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"italic\\\" data-semantic- data-semantic-parent=\\\"9\\\" data-semantic-role=\\\"latinletter\\\" data-semantic-type=\\\"identifier\\\"><mjx-c></mjx-c></mjx-mi><mjx-mo data-semantic-added=\\\"true\\\" data-semantic- data-semantic-operator=\\\"infixop,⁢\\\" data-semantic-parent=\\\"9\\\" data-semantic-role=\\\"multiplication\\\" data-semantic-type=\\\"operator\\\" style=\\\"margin-left: 0.056em; margin-right: 0.056em;\\\"><mjx-c></mjx-c></mjx-mo><mjx-mrow data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-children=\\\"1,5\\\" data-semantic-content=\\\"6,1\\\" data-semantic- data-semantic-parent=\\\"9\\\" data-semantic-role=\\\"simple function\\\" data-semantic-type=\\\"appl\\\"><mjx-mi data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"italic\\\" data-semantic- data-semantic-operator=\\\"appl\\\" data-semantic-parent=\\\"7\\\" data-semantic-role=\\\"simple function\\\" data-semantic-type=\\\"identifier\\\"><mjx-c></mjx-c></mjx-mi><mjx-mo data-semantic-added=\\\"true\\\" data-semantic- data-semantic-operator=\\\"appl\\\" data-semantic-parent=\\\"7\\\" data-semantic-role=\\\"application\\\" data-semantic-type=\\\"punctuation\\\" style=\\\"margin-left: 0.056em; margin-right: 0.056em;\\\"><mjx-c></mjx-c></mjx-mo><mjx-mrow data-semantic-children=\\\"3\\\" data-semantic-content=\\\"2,4\\\" data-semantic- data-semantic-parent=\\\"7\\\" data-semantic-role=\\\"leftright\\\" data-semantic-type=\\\"fenced\\\"><mjx-mo data-semantic- data-semantic-operator=\\\"fenced\\\" data-semantic-parent=\\\"5\\\" data-semantic-role=\\\"open\\\" data-semantic-type=\\\"fence\\\" style=\\\"margin-left: 0.056em; margin-right: 0.056em;\\\"><mjx-c></mjx-c></mjx-mo><mjx-mn data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"normal\\\" data-semantic- data-semantic-parent=\\\"5\\\" data-semantic-role=\\\"integer\\\" data-semantic-type=\\\"number\\\"><mjx-c></mjx-c></mjx-mn><mjx-mo data-semantic- data-semantic-operator=\\\"fenced\\\" data-semantic-parent=\\\"5\\\" data-semantic-role=\\\"close\\\" data-semantic-type=\\\"fence\\\" style=\\\"margin-left: 0.056em; margin-right: 0.056em;\\\"><mjx-c></mjx-c></mjx-mo></mjx-mrow></mjx-mrow></mjx-mrow></mjx-semantics></mjx-math><mjx-assistive-mml aria-hidden=\\\"true\\\" display=\\\"inline\\\" unselectable=\\\"on\\\"><math altimg=\\\"/cms/asset/b8845506-b90d-441a-96e3-2a4a7fc9497b/plms12589-math-0007.png\\\" xmlns=\\\"http://www.w3.org/1998/Math/MathML\\\"><semantics><mrow data-semantic-=\\\"\\\" data-semantic-annotation=\\\"clearspeak:unit\\\" data-semantic-children=\\\"0,7\\\" data-semantic-content=\\\"8\\\" data-semantic-role=\\\"implicit\\\" data-semantic-speech=\\\"upper G upper L left parenthesis 2 right parenthesis\\\" data-semantic-type=\\\"infixop\\\"><mi data-semantic-=\\\"\\\" data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"italic\\\" data-semantic-parent=\\\"9\\\" data-semantic-role=\\\"latinletter\\\" data-semantic-type=\\\"identifier\\\">G</mi><mo data-semantic-=\\\"\\\" data-semantic-added=\\\"true\\\" data-semantic-operator=\\\"infixop,⁢\\\" data-semantic-parent=\\\"9\\\" data-semantic-role=\\\"multiplication\\\" data-semantic-type=\\\"operator\\\">⁢</mo><mrow data-semantic-=\\\"\\\" data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-children=\\\"1,5\\\" data-semantic-content=\\\"6,1\\\" data-semantic-parent=\\\"9\\\" data-semantic-role=\\\"simple function\\\" data-semantic-type=\\\"appl\\\"><mi data-semantic-=\\\"\\\" data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"italic\\\" data-semantic-operator=\\\"appl\\\" data-semantic-parent=\\\"7\\\" data-semantic-role=\\\"simple function\\\" data-semantic-type=\\\"identifier\\\">L</mi><mo data-semantic-=\\\"\\\" data-semantic-added=\\\"true\\\" data-semantic-operator=\\\"appl\\\" data-semantic-parent=\\\"7\\\" data-semantic-role=\\\"application\\\" data-semantic-type=\\\"punctuation\\\">⁡</mo><mrow data-semantic-=\\\"\\\" data-semantic-children=\\\"3\\\" data-semantic-content=\\\"2,4\\\" data-semantic-parent=\\\"7\\\" data-semantic-role=\\\"leftright\\\" data-semantic-type=\\\"fenced\\\"><mo data-semantic-=\\\"\\\" data-semantic-operator=\\\"fenced\\\" data-semantic-parent=\\\"5\\\" data-semantic-role=\\\"open\\\" data-semantic-type=\\\"fence\\\" stretchy=\\\"false\\\">(</mo><mn data-semantic-=\\\"\\\" data-semantic-annotation=\\\"clearspeak:simple\\\" data-semantic-font=\\\"normal\\\" data-semantic-parent=\\\"5\\\" data-semantic-role=\\\"integer\\\" data-semantic-type=\\\"number\\\">2</mn><mo data-semantic-=\\\"\\\" data-semantic-operator=\\\"fenced\\\" data-semantic-parent=\\\"5\\\" data-semantic-role=\\\"close\\\" data-semantic-type=\\\"fence\\\" stretchy=\\\"false\\\">)</mo></mrow></mrow></mrow>$GL(2)$</annotation></semantics></math></mjx-assistive-mml></mjx-container> coefficients obtained using the delta symbol approach.\",\"PeriodicalId\":49667,\"journal\":{\"name\":\"Proceedings of the London Mathematical Society\",\"volume\":\"54 1\",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-03-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the London Mathematical Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1112/plms.12589\",\"RegionNum\":1,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the London Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1112/plms.12589","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们得到了三元除数函数 d3$d_3$ 到无平方和素幂模的分布指数 1/2+1/30$1/2+1/30$ ,改进了 Fouvry-Kowalski-Michel、Heath-Brown 和 Friedlander-Iwaniec 以前的结果。关键的输入是利用德尔塔符号方法获得的具有 GL(2)$GL(2)$ 系数的双线性和的某些估计值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bilinear sums with GL(2) coefficients and the exponent of distribution of d3
We obtain the exponent of distribution for the ternary divisor function to square-free and prime power moduli, improving the previous results of Fouvry–Kowalski–Michel, Heath-Brown and Friedlander–Iwaniec. The key input is certain estimates on bilinear sums with coefficients obtained using the delta symbol approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.90
自引率
0.00%
发文量
82
审稿时长
6-12 weeks
期刊介绍: The Proceedings of the London Mathematical Society is the flagship journal of the LMS. It publishes articles of the highest quality and significance across a broad range of mathematics. There are no page length restrictions for submitted papers. The Proceedings has its own Editorial Board separate from that of the Journal, Bulletin and Transactions of the LMS.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信