{"title":"利用加权等级相关统计检验全基因组转录组图谱数据中等级基因集的显著性","authors":"Min Yao, Hao He, Binyu Wang, Xinmiao Huang, Sunli Zheng, Jianwu Wang, Xuejun Gao, Tinghua Huang","doi":"10.2174/0113892029280470240306044159","DOIUrl":null,"url":null,"abstract":"Objective: Ignoring the rank information during the enrichment analysis will lead to improper statistical inference. We address this issue by developing of new method to test the significance of ranked gene sets in genome-wide transcriptome profiling data. Methods: A method was proposed by first creating ranked gene sets and gene lists and then applying weighted Kendall's tau rank correlation statistics to the test. After introducing top-down weights to the genes in the gene set, a new software called \"Flaver\" was developed. Results: Theoretical properties of the proposed method were established, and its differences over the GSEA approach were demonstrated when analyzing the transcriptome profiling data across 55 human tissues and 176 human cell-lines. The results indicated that the TFs identified by our method have higher tendency to be differentially expressed across the tissues analyzed than its competitors. It significantly outperforms the well-known gene set enrichment analyzing tools, GOStats (9%) and GSEA (17%), in analyzing well-documented human RNA transcriptome datasets. Conclusions: The method is outstanding in detecting gene sets of which the gene ranks were correlated with the expression levels of the genes in the transcriptome data.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Testing the Significance of Ranked Gene Sets in Genome-Wide Transcriptome Profiling Data Using Weighted Rank Correlation Statistics\",\"authors\":\"Min Yao, Hao He, Binyu Wang, Xinmiao Huang, Sunli Zheng, Jianwu Wang, Xuejun Gao, Tinghua Huang\",\"doi\":\"10.2174/0113892029280470240306044159\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Objective: Ignoring the rank information during the enrichment analysis will lead to improper statistical inference. We address this issue by developing of new method to test the significance of ranked gene sets in genome-wide transcriptome profiling data. Methods: A method was proposed by first creating ranked gene sets and gene lists and then applying weighted Kendall's tau rank correlation statistics to the test. After introducing top-down weights to the genes in the gene set, a new software called \\\"Flaver\\\" was developed. Results: Theoretical properties of the proposed method were established, and its differences over the GSEA approach were demonstrated when analyzing the transcriptome profiling data across 55 human tissues and 176 human cell-lines. The results indicated that the TFs identified by our method have higher tendency to be differentially expressed across the tissues analyzed than its competitors. It significantly outperforms the well-known gene set enrichment analyzing tools, GOStats (9%) and GSEA (17%), in analyzing well-documented human RNA transcriptome datasets. Conclusions: The method is outstanding in detecting gene sets of which the gene ranks were correlated with the expression levels of the genes in the transcriptome data.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-03-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.2174/0113892029280470240306044159\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.2174/0113892029280470240306044159","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Testing the Significance of Ranked Gene Sets in Genome-Wide Transcriptome Profiling Data Using Weighted Rank Correlation Statistics
Objective: Ignoring the rank information during the enrichment analysis will lead to improper statistical inference. We address this issue by developing of new method to test the significance of ranked gene sets in genome-wide transcriptome profiling data. Methods: A method was proposed by first creating ranked gene sets and gene lists and then applying weighted Kendall's tau rank correlation statistics to the test. After introducing top-down weights to the genes in the gene set, a new software called "Flaver" was developed. Results: Theoretical properties of the proposed method were established, and its differences over the GSEA approach were demonstrated when analyzing the transcriptome profiling data across 55 human tissues and 176 human cell-lines. The results indicated that the TFs identified by our method have higher tendency to be differentially expressed across the tissues analyzed than its competitors. It significantly outperforms the well-known gene set enrichment analyzing tools, GOStats (9%) and GSEA (17%), in analyzing well-documented human RNA transcriptome datasets. Conclusions: The method is outstanding in detecting gene sets of which the gene ranks were correlated with the expression levels of the genes in the transcriptome data.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.