{"title":"带质量和一般非线性记忆的阻尼波方程的炸裂","authors":"Zhendong Feng, Fei Guo, Yuequn Li","doi":"10.1007/s40840-024-01673-9","DOIUrl":null,"url":null,"abstract":"<p>We investigate the blowup conditions to the Cauchy problem for a semilinear wave equation with scale-invariant damping, mass and general nonlinear memory term (see Eq. (1.1) in the Introduction). We first establish a local (in time) existence result for this problem by Banach’s fixed point theorem, where Palmieri’s decay estimates on the solution to the corresponding linear homogeneous equation play an essential role in the proof. We then formulate a blowup result for energy solutions by applying the iteration argument together with the test function method.\n</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Blowup for a Damped Wave Equation with Mass and General Nonlinear Memory\",\"authors\":\"Zhendong Feng, Fei Guo, Yuequn Li\",\"doi\":\"10.1007/s40840-024-01673-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We investigate the blowup conditions to the Cauchy problem for a semilinear wave equation with scale-invariant damping, mass and general nonlinear memory term (see Eq. (1.1) in the Introduction). We first establish a local (in time) existence result for this problem by Banach’s fixed point theorem, where Palmieri’s decay estimates on the solution to the corresponding linear homogeneous equation play an essential role in the proof. We then formulate a blowup result for energy solutions by applying the iteration argument together with the test function method.\\n</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-03-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s40840-024-01673-9\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s40840-024-01673-9","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Blowup for a Damped Wave Equation with Mass and General Nonlinear Memory
We investigate the blowup conditions to the Cauchy problem for a semilinear wave equation with scale-invariant damping, mass and general nonlinear memory term (see Eq. (1.1) in the Introduction). We first establish a local (in time) existence result for this problem by Banach’s fixed point theorem, where Palmieri’s decay estimates on the solution to the corresponding linear homogeneous equation play an essential role in the proof. We then formulate a blowup result for energy solutions by applying the iteration argument together with the test function method.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.