{"title":"带质量和一般非线性记忆的阻尼波方程的炸裂","authors":"Zhendong Feng, Fei Guo, Yuequn Li","doi":"10.1007/s40840-024-01673-9","DOIUrl":null,"url":null,"abstract":"<p>We investigate the blowup conditions to the Cauchy problem for a semilinear wave equation with scale-invariant damping, mass and general nonlinear memory term (see Eq. (1.1) in the Introduction). We first establish a local (in time) existence result for this problem by Banach’s fixed point theorem, where Palmieri’s decay estimates on the solution to the corresponding linear homogeneous equation play an essential role in the proof. We then formulate a blowup result for energy solutions by applying the iteration argument together with the test function method.\n</p>","PeriodicalId":50718,"journal":{"name":"Bulletin of the Malaysian Mathematical Sciences Society","volume":"20 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Blowup for a Damped Wave Equation with Mass and General Nonlinear Memory\",\"authors\":\"Zhendong Feng, Fei Guo, Yuequn Li\",\"doi\":\"10.1007/s40840-024-01673-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We investigate the blowup conditions to the Cauchy problem for a semilinear wave equation with scale-invariant damping, mass and general nonlinear memory term (see Eq. (1.1) in the Introduction). We first establish a local (in time) existence result for this problem by Banach’s fixed point theorem, where Palmieri’s decay estimates on the solution to the corresponding linear homogeneous equation play an essential role in the proof. We then formulate a blowup result for energy solutions by applying the iteration argument together with the test function method.\\n</p>\",\"PeriodicalId\":50718,\"journal\":{\"name\":\"Bulletin of the Malaysian Mathematical Sciences Society\",\"volume\":\"20 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-03-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of the Malaysian Mathematical Sciences Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s40840-024-01673-9\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the Malaysian Mathematical Sciences Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s40840-024-01673-9","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Blowup for a Damped Wave Equation with Mass and General Nonlinear Memory
We investigate the blowup conditions to the Cauchy problem for a semilinear wave equation with scale-invariant damping, mass and general nonlinear memory term (see Eq. (1.1) in the Introduction). We first establish a local (in time) existence result for this problem by Banach’s fixed point theorem, where Palmieri’s decay estimates on the solution to the corresponding linear homogeneous equation play an essential role in the proof. We then formulate a blowup result for energy solutions by applying the iteration argument together with the test function method.
期刊介绍:
This journal publishes original research articles and expository survey articles in all branches of mathematics. Recent issues have included articles on such topics as Spectral synthesis for the operator space projective tensor product of C*-algebras; Topological structures on LA-semigroups; Implicit iteration methods for variational inequalities in Banach spaces; and The Quarter-Sweep Geometric Mean method for solving second kind linear fredholm integral equations.