带质量和一般非线性记忆的阻尼波方程的炸裂

IF 1 3区 数学 Q1 MATHEMATICS
Zhendong Feng, Fei Guo, Yuequn Li
{"title":"带质量和一般非线性记忆的阻尼波方程的炸裂","authors":"Zhendong Feng, Fei Guo, Yuequn Li","doi":"10.1007/s40840-024-01673-9","DOIUrl":null,"url":null,"abstract":"<p>We investigate the blowup conditions to the Cauchy problem for a semilinear wave equation with scale-invariant damping, mass and general nonlinear memory term (see Eq. (1.1) in the Introduction). We first establish a local (in time) existence result for this problem by Banach’s fixed point theorem, where Palmieri’s decay estimates on the solution to the corresponding linear homogeneous equation play an essential role in the proof. We then formulate a blowup result for energy solutions by applying the iteration argument together with the test function method.\n</p>","PeriodicalId":50718,"journal":{"name":"Bulletin of the Malaysian Mathematical Sciences Society","volume":"20 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Blowup for a Damped Wave Equation with Mass and General Nonlinear Memory\",\"authors\":\"Zhendong Feng, Fei Guo, Yuequn Li\",\"doi\":\"10.1007/s40840-024-01673-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We investigate the blowup conditions to the Cauchy problem for a semilinear wave equation with scale-invariant damping, mass and general nonlinear memory term (see Eq. (1.1) in the Introduction). We first establish a local (in time) existence result for this problem by Banach’s fixed point theorem, where Palmieri’s decay estimates on the solution to the corresponding linear homogeneous equation play an essential role in the proof. We then formulate a blowup result for energy solutions by applying the iteration argument together with the test function method.\\n</p>\",\"PeriodicalId\":50718,\"journal\":{\"name\":\"Bulletin of the Malaysian Mathematical Sciences Society\",\"volume\":\"20 1\",\"pages\":\"\"},\"PeriodicalIF\":1.0000,\"publicationDate\":\"2024-03-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bulletin of the Malaysian Mathematical Sciences Society\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s40840-024-01673-9\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of the Malaysian Mathematical Sciences Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s40840-024-01673-9","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们研究了具有尺度不变阻尼、质量和一般非线性记忆项的半线性波方程(见引言中的公式 (1.1))的考奇问题的炸毁条件。我们首先通过巴纳赫定点定理建立了该问题的局部(时间)存在性结果,其中 Palmieri 对相应线性均质方程解的衰减估计在证明中起着至关重要的作用。然后,我们通过应用迭代论证和检验函数法,提出了能量解的炸毁结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Blowup for a Damped Wave Equation with Mass and General Nonlinear Memory

Blowup for a Damped Wave Equation with Mass and General Nonlinear Memory

We investigate the blowup conditions to the Cauchy problem for a semilinear wave equation with scale-invariant damping, mass and general nonlinear memory term (see Eq. (1.1) in the Introduction). We first establish a local (in time) existence result for this problem by Banach’s fixed point theorem, where Palmieri’s decay estimates on the solution to the corresponding linear homogeneous equation play an essential role in the proof. We then formulate a blowup result for energy solutions by applying the iteration argument together with the test function method.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
2.40
自引率
8.30%
发文量
176
审稿时长
3 months
期刊介绍: This journal publishes original research articles and expository survey articles in all branches of mathematics. Recent issues have included articles on such topics as Spectral synthesis for the operator space projective tensor product of C*-algebras; Topological structures on LA-semigroups; Implicit iteration methods for variational inequalities in Banach spaces; and The Quarter-Sweep Geometric Mean method for solving second kind linear fredholm integral equations.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信