R. Pepijn van Denderen, Ralph M. J. Schielen, Andries J. Paarlberg, Michiel Reneerkens, Denie C. M. Augustijn
{"title":"分析河床自然水位动态,减轻河流干预对形态的影响","authors":"R. Pepijn van Denderen, Ralph M. J. Schielen, Andries J. Paarlberg, Michiel Reneerkens, Denie C. M. Augustijn","doi":"10.1002/rra.4270","DOIUrl":null,"url":null,"abstract":"Local river interventions, such as channel narrowing or side channels, are often necessary to maintain safety, ecology, or navigation. Such interventions have different effects on the river's bed morphology during periods of high‐ and low‐discharge events. Mapping the bed‐level variations for different discharge levels and understanding these effects can provide new opportunities for the design of interventions in multifunctional rivers. At any moment, the local bed level in a river is composed of bed‐level changes that occur at various spatial and temporal scales. These changes consist of bed aggradation/degradation trends on a large scale, on an intermediate scale bed‐level variations as a result of discharge fluctuations, and on small‐scale moving river bed forms like dunes. Using the river Waal in the Netherlands as a case study, we analyze the intermediate‐term bed‐level changes resulting from discharge fluctuations (dynamic component) and propose adaptations to the design of floodplain interventions such that possible negative impact on the local bed‐level changes is minimized. Time series of bed levels along two 10 km stretches of the case study are considered for a period of 16 years (2005–2020). Using a wavelet transform, we isolate bed‐level variations resulting from discharge events. These bed‐level variations are presented based on the magnitude of the discharge event and are compiled in an interactive atlas of river morphodynamics, allowing us to mitigate the impact of interventions. This will help river managers in the design of interventions and lead to improved management, operation, and maintenance of multifunctional rivers.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analyzing natural bed‐level dynamics to mitigate the morphological impact of river interventions\",\"authors\":\"R. Pepijn van Denderen, Ralph M. J. Schielen, Andries J. Paarlberg, Michiel Reneerkens, Denie C. M. Augustijn\",\"doi\":\"10.1002/rra.4270\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Local river interventions, such as channel narrowing or side channels, are often necessary to maintain safety, ecology, or navigation. Such interventions have different effects on the river's bed morphology during periods of high‐ and low‐discharge events. Mapping the bed‐level variations for different discharge levels and understanding these effects can provide new opportunities for the design of interventions in multifunctional rivers. At any moment, the local bed level in a river is composed of bed‐level changes that occur at various spatial and temporal scales. These changes consist of bed aggradation/degradation trends on a large scale, on an intermediate scale bed‐level variations as a result of discharge fluctuations, and on small‐scale moving river bed forms like dunes. Using the river Waal in the Netherlands as a case study, we analyze the intermediate‐term bed‐level changes resulting from discharge fluctuations (dynamic component) and propose adaptations to the design of floodplain interventions such that possible negative impact on the local bed‐level changes is minimized. Time series of bed levels along two 10 km stretches of the case study are considered for a period of 16 years (2005–2020). Using a wavelet transform, we isolate bed‐level variations resulting from discharge events. These bed‐level variations are presented based on the magnitude of the discharge event and are compiled in an interactive atlas of river morphodynamics, allowing us to mitigate the impact of interventions. This will help river managers in the design of interventions and lead to improved management, operation, and maintenance of multifunctional rivers.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-03-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1002/rra.4270\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1002/rra.4270","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Analyzing natural bed‐level dynamics to mitigate the morphological impact of river interventions
Local river interventions, such as channel narrowing or side channels, are often necessary to maintain safety, ecology, or navigation. Such interventions have different effects on the river's bed morphology during periods of high‐ and low‐discharge events. Mapping the bed‐level variations for different discharge levels and understanding these effects can provide new opportunities for the design of interventions in multifunctional rivers. At any moment, the local bed level in a river is composed of bed‐level changes that occur at various spatial and temporal scales. These changes consist of bed aggradation/degradation trends on a large scale, on an intermediate scale bed‐level variations as a result of discharge fluctuations, and on small‐scale moving river bed forms like dunes. Using the river Waal in the Netherlands as a case study, we analyze the intermediate‐term bed‐level changes resulting from discharge fluctuations (dynamic component) and propose adaptations to the design of floodplain interventions such that possible negative impact on the local bed‐level changes is minimized. Time series of bed levels along two 10 km stretches of the case study are considered for a period of 16 years (2005–2020). Using a wavelet transform, we isolate bed‐level variations resulting from discharge events. These bed‐level variations are presented based on the magnitude of the discharge event and are compiled in an interactive atlas of river morphodynamics, allowing us to mitigate the impact of interventions. This will help river managers in the design of interventions and lead to improved management, operation, and maintenance of multifunctional rivers.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.