R. Pepijn van Denderen, Ralph M. J. Schielen, Andries J. Paarlberg, Michiel Reneerkens, Denie C. M. Augustijn
{"title":"分析河床自然水位动态,减轻河流干预对形态的影响","authors":"R. Pepijn van Denderen, Ralph M. J. Schielen, Andries J. Paarlberg, Michiel Reneerkens, Denie C. M. Augustijn","doi":"10.1002/rra.4270","DOIUrl":null,"url":null,"abstract":"Local river interventions, such as channel narrowing or side channels, are often necessary to maintain safety, ecology, or navigation. Such interventions have different effects on the river's bed morphology during periods of high‐ and low‐discharge events. Mapping the bed‐level variations for different discharge levels and understanding these effects can provide new opportunities for the design of interventions in multifunctional rivers. At any moment, the local bed level in a river is composed of bed‐level changes that occur at various spatial and temporal scales. These changes consist of bed aggradation/degradation trends on a large scale, on an intermediate scale bed‐level variations as a result of discharge fluctuations, and on small‐scale moving river bed forms like dunes. Using the river Waal in the Netherlands as a case study, we analyze the intermediate‐term bed‐level changes resulting from discharge fluctuations (dynamic component) and propose adaptations to the design of floodplain interventions such that possible negative impact on the local bed‐level changes is minimized. Time series of bed levels along two 10 km stretches of the case study are considered for a period of 16 years (2005–2020). Using a wavelet transform, we isolate bed‐level variations resulting from discharge events. These bed‐level variations are presented based on the magnitude of the discharge event and are compiled in an interactive atlas of river morphodynamics, allowing us to mitigate the impact of interventions. This will help river managers in the design of interventions and lead to improved management, operation, and maintenance of multifunctional rivers.","PeriodicalId":21513,"journal":{"name":"River Research and Applications","volume":"15 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2024-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analyzing natural bed‐level dynamics to mitigate the morphological impact of river interventions\",\"authors\":\"R. Pepijn van Denderen, Ralph M. J. Schielen, Andries J. Paarlberg, Michiel Reneerkens, Denie C. M. Augustijn\",\"doi\":\"10.1002/rra.4270\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Local river interventions, such as channel narrowing or side channels, are often necessary to maintain safety, ecology, or navigation. Such interventions have different effects on the river's bed morphology during periods of high‐ and low‐discharge events. Mapping the bed‐level variations for different discharge levels and understanding these effects can provide new opportunities for the design of interventions in multifunctional rivers. At any moment, the local bed level in a river is composed of bed‐level changes that occur at various spatial and temporal scales. These changes consist of bed aggradation/degradation trends on a large scale, on an intermediate scale bed‐level variations as a result of discharge fluctuations, and on small‐scale moving river bed forms like dunes. Using the river Waal in the Netherlands as a case study, we analyze the intermediate‐term bed‐level changes resulting from discharge fluctuations (dynamic component) and propose adaptations to the design of floodplain interventions such that possible negative impact on the local bed‐level changes is minimized. Time series of bed levels along two 10 km stretches of the case study are considered for a period of 16 years (2005–2020). Using a wavelet transform, we isolate bed‐level variations resulting from discharge events. These bed‐level variations are presented based on the magnitude of the discharge event and are compiled in an interactive atlas of river morphodynamics, allowing us to mitigate the impact of interventions. This will help river managers in the design of interventions and lead to improved management, operation, and maintenance of multifunctional rivers.\",\"PeriodicalId\":21513,\"journal\":{\"name\":\"River Research and Applications\",\"volume\":\"15 1\",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-03-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"River Research and Applications\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1002/rra.4270\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"River Research and Applications","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1002/rra.4270","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Analyzing natural bed‐level dynamics to mitigate the morphological impact of river interventions
Local river interventions, such as channel narrowing or side channels, are often necessary to maintain safety, ecology, or navigation. Such interventions have different effects on the river's bed morphology during periods of high‐ and low‐discharge events. Mapping the bed‐level variations for different discharge levels and understanding these effects can provide new opportunities for the design of interventions in multifunctional rivers. At any moment, the local bed level in a river is composed of bed‐level changes that occur at various spatial and temporal scales. These changes consist of bed aggradation/degradation trends on a large scale, on an intermediate scale bed‐level variations as a result of discharge fluctuations, and on small‐scale moving river bed forms like dunes. Using the river Waal in the Netherlands as a case study, we analyze the intermediate‐term bed‐level changes resulting from discharge fluctuations (dynamic component) and propose adaptations to the design of floodplain interventions such that possible negative impact on the local bed‐level changes is minimized. Time series of bed levels along two 10 km stretches of the case study are considered for a period of 16 years (2005–2020). Using a wavelet transform, we isolate bed‐level variations resulting from discharge events. These bed‐level variations are presented based on the magnitude of the discharge event and are compiled in an interactive atlas of river morphodynamics, allowing us to mitigate the impact of interventions. This will help river managers in the design of interventions and lead to improved management, operation, and maintenance of multifunctional rivers.
期刊介绍:
River Research and Applications , previously published as Regulated Rivers: Research and Management (1987-2001), is an international journal dedicated to the promotion of basic and applied scientific research on rivers. The journal publishes original scientific and technical papers on biological, ecological, geomorphological, hydrological, engineering and geographical aspects related to rivers in both the developed and developing world. Papers showing how basic studies and new science can be of use in applied problems associated with river management, regulation and restoration are encouraged as is interdisciplinary research concerned directly or indirectly with river management problems.