Magd M Badr, Manar E Abdel-Raouf, Alaa IE Abdelaziz, Abdulrahiem MA Hasan, Zizi I Abdeen
{"title":"含蒙脱石的天然橡胶/乙丙二烯单体橡胶混合物的制备与性能","authors":"Magd M Badr, Manar E Abdel-Raouf, Alaa IE Abdelaziz, Abdulrahiem MA Hasan, Zizi I Abdeen","doi":"10.1177/14777606241239063","DOIUrl":null,"url":null,"abstract":"This article aims to evaluate and compare two types of organic surface-modified-nanoclay of octadecylamine-modified-bentonite-nanoclay (ODA-BNC) and aminopropyltrimethoxysilane-octadecylamine-modified-nanomontmorillonite (APS-ODA-MMT). Each type of nanoclay is combined with silica as a bi-filler for natural rubber (NR)/ethylene propylene diene monomer rubber (EPDM) in a 50/50 blend ratio for possible vulcanized rubber nanocomposite application. The total filler content is 50 phr while nanoclay filler content ranges from 0 to 20 phr, keeping the other ingredients ratio fixed. The prepared composites are characterized by the Fourier transform infrared spectrophotometer (FTIR) and their mechanical and thermal properties are thoroughly investigated. The data reveal that the fillers added to the rubber can improve its surface properties according to their type and amount as confirmed by the Atomic force microscope (AFM), and Scanning electron microscope (SEM) investigation. The surface of rubber containing APS-ODA-MMT displayed higher height (251) and roughness surface (94.11), than those (69.8) and (45.62) respectively, containing ODA-BNC. Moreover, the acid resistance of the prepared composites is verified and indicated that increasing the nanoclay ratio (20%) enhances the acid resistance by reducing the surface distortion while keeping the surface morphology. The mechanical properties and Thermogravimetric Analysis (TGA) measurements showed that the rubber containing ODA-BNC has higher values of stress (2.2), elongation (975), and thermal stability (470, 505, 520°C) than those (1.75), (650), and (440, 460, 470°C) respectively, containing the APS-ODA-MMT. Moreover, the durability investigation of the vulcanized rubber via the AFM found the modified composites can be used in harsh environments as a covering layer in petrochemical networks or chemical factories.","PeriodicalId":20860,"journal":{"name":"Progress in Rubber Plastics and Recycling Technology","volume":"3 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2024-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Preparation and properties of montmorillonite incorporated natural rubber/ethylene propylene diene monomer rubber blends\",\"authors\":\"Magd M Badr, Manar E Abdel-Raouf, Alaa IE Abdelaziz, Abdulrahiem MA Hasan, Zizi I Abdeen\",\"doi\":\"10.1177/14777606241239063\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article aims to evaluate and compare two types of organic surface-modified-nanoclay of octadecylamine-modified-bentonite-nanoclay (ODA-BNC) and aminopropyltrimethoxysilane-octadecylamine-modified-nanomontmorillonite (APS-ODA-MMT). Each type of nanoclay is combined with silica as a bi-filler for natural rubber (NR)/ethylene propylene diene monomer rubber (EPDM) in a 50/50 blend ratio for possible vulcanized rubber nanocomposite application. The total filler content is 50 phr while nanoclay filler content ranges from 0 to 20 phr, keeping the other ingredients ratio fixed. The prepared composites are characterized by the Fourier transform infrared spectrophotometer (FTIR) and their mechanical and thermal properties are thoroughly investigated. The data reveal that the fillers added to the rubber can improve its surface properties according to their type and amount as confirmed by the Atomic force microscope (AFM), and Scanning electron microscope (SEM) investigation. The surface of rubber containing APS-ODA-MMT displayed higher height (251) and roughness surface (94.11), than those (69.8) and (45.62) respectively, containing ODA-BNC. Moreover, the acid resistance of the prepared composites is verified and indicated that increasing the nanoclay ratio (20%) enhances the acid resistance by reducing the surface distortion while keeping the surface morphology. The mechanical properties and Thermogravimetric Analysis (TGA) measurements showed that the rubber containing ODA-BNC has higher values of stress (2.2), elongation (975), and thermal stability (470, 505, 520°C) than those (1.75), (650), and (440, 460, 470°C) respectively, containing the APS-ODA-MMT. Moreover, the durability investigation of the vulcanized rubber via the AFM found the modified composites can be used in harsh environments as a covering layer in petrochemical networks or chemical factories.\",\"PeriodicalId\":20860,\"journal\":{\"name\":\"Progress in Rubber Plastics and Recycling Technology\",\"volume\":\"3 1\",\"pages\":\"\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2024-03-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Progress in Rubber Plastics and Recycling Technology\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1177/14777606241239063\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, COMPOSITES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Rubber Plastics and Recycling Technology","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1177/14777606241239063","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, COMPOSITES","Score":null,"Total":0}
Preparation and properties of montmorillonite incorporated natural rubber/ethylene propylene diene monomer rubber blends
This article aims to evaluate and compare two types of organic surface-modified-nanoclay of octadecylamine-modified-bentonite-nanoclay (ODA-BNC) and aminopropyltrimethoxysilane-octadecylamine-modified-nanomontmorillonite (APS-ODA-MMT). Each type of nanoclay is combined with silica as a bi-filler for natural rubber (NR)/ethylene propylene diene monomer rubber (EPDM) in a 50/50 blend ratio for possible vulcanized rubber nanocomposite application. The total filler content is 50 phr while nanoclay filler content ranges from 0 to 20 phr, keeping the other ingredients ratio fixed. The prepared composites are characterized by the Fourier transform infrared spectrophotometer (FTIR) and their mechanical and thermal properties are thoroughly investigated. The data reveal that the fillers added to the rubber can improve its surface properties according to their type and amount as confirmed by the Atomic force microscope (AFM), and Scanning electron microscope (SEM) investigation. The surface of rubber containing APS-ODA-MMT displayed higher height (251) and roughness surface (94.11), than those (69.8) and (45.62) respectively, containing ODA-BNC. Moreover, the acid resistance of the prepared composites is verified and indicated that increasing the nanoclay ratio (20%) enhances the acid resistance by reducing the surface distortion while keeping the surface morphology. The mechanical properties and Thermogravimetric Analysis (TGA) measurements showed that the rubber containing ODA-BNC has higher values of stress (2.2), elongation (975), and thermal stability (470, 505, 520°C) than those (1.75), (650), and (440, 460, 470°C) respectively, containing the APS-ODA-MMT. Moreover, the durability investigation of the vulcanized rubber via the AFM found the modified composites can be used in harsh environments as a covering layer in petrochemical networks or chemical factories.
期刊介绍:
The journal aims to bridge the gap between research and development and the practical and commercial applications of polymers in a wide range of uses. Current developments and likely future trends are reviewed across key areas of the polymer industry, together with existing and potential opportunities for the innovative use of plastic and rubber products.