拉普拉斯网络中的同步模式

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
{"title":"拉普拉斯网络中的同步模式","authors":"","doi":"10.1007/s40687-024-00428-z","DOIUrl":null,"url":null,"abstract":"<h3>Abstract</h3> <p>A network of coupled dynamical systems is represented by a graph whose vertices represent individual cells and whose edges represent couplings between cells. Motivated by the impact of synchronization results of the Kuramoto networks, we introduce the generalized class of Laplacian networks, governed by mappings whose Jacobian at any point is a symmetric matrix with row entries summing to zero. By recognizing this matrix with a weighted Laplacian of the associated graph, we derive the optimal estimates of its positive, null and negative eigenvalues directly from the graph topology. Furthermore, we provide a characterization of the mappings that define Laplacian networks. Lastly, we discuss stability of equilibria inside synchrony subspaces for two types of Laplacian network on a ring with some extra couplings.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synchrony patterns in Laplacian networks\",\"authors\":\"\",\"doi\":\"10.1007/s40687-024-00428-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3>Abstract</h3> <p>A network of coupled dynamical systems is represented by a graph whose vertices represent individual cells and whose edges represent couplings between cells. Motivated by the impact of synchronization results of the Kuramoto networks, we introduce the generalized class of Laplacian networks, governed by mappings whose Jacobian at any point is a symmetric matrix with row entries summing to zero. By recognizing this matrix with a weighted Laplacian of the associated graph, we derive the optimal estimates of its positive, null and negative eigenvalues directly from the graph topology. Furthermore, we provide a characterization of the mappings that define Laplacian networks. Lastly, we discuss stability of equilibria inside synchrony subspaces for two types of Laplacian network on a ring with some extra couplings.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-03-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s40687-024-00428-z\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s40687-024-00428-z","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

摘要 耦合动力系统网络由一个图表示,图的顶点代表单个单元,图的边代表单元之间的耦合。受仓本网络同步结果的影响,我们引入了广义的拉普拉斯网络类别,该类网络受映射控制,其任意点的雅各布矩阵是行项和为零的对称矩阵。通过将该矩阵与相关图的加权拉普拉卡矩阵进行识别,我们可以直接从图拓扑推导出其正、空和负特征值的最优估计值。此外,我们还对定义拉普拉斯网络的映射进行了表征。最后,我们讨论了带有一些额外耦合的环上两类拉普拉斯网络在同步子空间内的均衡稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Synchrony patterns in Laplacian networks

Abstract

A network of coupled dynamical systems is represented by a graph whose vertices represent individual cells and whose edges represent couplings between cells. Motivated by the impact of synchronization results of the Kuramoto networks, we introduce the generalized class of Laplacian networks, governed by mappings whose Jacobian at any point is a symmetric matrix with row entries summing to zero. By recognizing this matrix with a weighted Laplacian of the associated graph, we derive the optimal estimates of its positive, null and negative eigenvalues directly from the graph topology. Furthermore, we provide a characterization of the mappings that define Laplacian networks. Lastly, we discuss stability of equilibria inside synchrony subspaces for two types of Laplacian network on a ring with some extra couplings.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信