拉普拉斯网络中的同步模式

IF 1.2 3区 数学 Q1 MATHEMATICS
{"title":"拉普拉斯网络中的同步模式","authors":"","doi":"10.1007/s40687-024-00428-z","DOIUrl":null,"url":null,"abstract":"<h3>Abstract</h3> <p>A network of coupled dynamical systems is represented by a graph whose vertices represent individual cells and whose edges represent couplings between cells. Motivated by the impact of synchronization results of the Kuramoto networks, we introduce the generalized class of Laplacian networks, governed by mappings whose Jacobian at any point is a symmetric matrix with row entries summing to zero. By recognizing this matrix with a weighted Laplacian of the associated graph, we derive the optimal estimates of its positive, null and negative eigenvalues directly from the graph topology. Furthermore, we provide a characterization of the mappings that define Laplacian networks. Lastly, we discuss stability of equilibria inside synchrony subspaces for two types of Laplacian network on a ring with some extra couplings.</p>","PeriodicalId":48561,"journal":{"name":"Research in the Mathematical Sciences","volume":"105 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2024-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synchrony patterns in Laplacian networks\",\"authors\":\"\",\"doi\":\"10.1007/s40687-024-00428-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3>Abstract</h3> <p>A network of coupled dynamical systems is represented by a graph whose vertices represent individual cells and whose edges represent couplings between cells. Motivated by the impact of synchronization results of the Kuramoto networks, we introduce the generalized class of Laplacian networks, governed by mappings whose Jacobian at any point is a symmetric matrix with row entries summing to zero. By recognizing this matrix with a weighted Laplacian of the associated graph, we derive the optimal estimates of its positive, null and negative eigenvalues directly from the graph topology. Furthermore, we provide a characterization of the mappings that define Laplacian networks. Lastly, we discuss stability of equilibria inside synchrony subspaces for two types of Laplacian network on a ring with some extra couplings.</p>\",\"PeriodicalId\":48561,\"journal\":{\"name\":\"Research in the Mathematical Sciences\",\"volume\":\"105 1\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-03-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Research in the Mathematical Sciences\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s40687-024-00428-z\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Research in the Mathematical Sciences","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s40687-024-00428-z","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

摘要 耦合动力系统网络由一个图表示,图的顶点代表单个单元,图的边代表单元之间的耦合。受仓本网络同步结果的影响,我们引入了广义的拉普拉斯网络类别,该类网络受映射控制,其任意点的雅各布矩阵是行项和为零的对称矩阵。通过将该矩阵与相关图的加权拉普拉卡矩阵进行识别,我们可以直接从图拓扑推导出其正、空和负特征值的最优估计值。此外,我们还对定义拉普拉斯网络的映射进行了表征。最后,我们讨论了带有一些额外耦合的环上两类拉普拉斯网络在同步子空间内的均衡稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Synchrony patterns in Laplacian networks

Abstract

A network of coupled dynamical systems is represented by a graph whose vertices represent individual cells and whose edges represent couplings between cells. Motivated by the impact of synchronization results of the Kuramoto networks, we introduce the generalized class of Laplacian networks, governed by mappings whose Jacobian at any point is a symmetric matrix with row entries summing to zero. By recognizing this matrix with a weighted Laplacian of the associated graph, we derive the optimal estimates of its positive, null and negative eigenvalues directly from the graph topology. Furthermore, we provide a characterization of the mappings that define Laplacian networks. Lastly, we discuss stability of equilibria inside synchrony subspaces for two types of Laplacian network on a ring with some extra couplings.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Research in the Mathematical Sciences
Research in the Mathematical Sciences Mathematics-Computational Mathematics
CiteScore
2.00
自引率
8.30%
发文量
58
期刊介绍: Research in the Mathematical Sciences is an international, peer-reviewed hybrid journal covering the full scope of Theoretical Mathematics, Applied Mathematics, and Theoretical Computer Science. The Mission of the Journal is to publish high-quality original articles that make a significant contribution to the research areas of both theoretical and applied mathematics and theoretical computer science. This journal is an efficient enterprise where the editors play a central role in soliciting the best research papers, and where editorial decisions are reached in a timely fashion. Research in the Mathematical Sciences does not have a length restriction and encourages the submission of longer articles in which more complex and detailed analysis and proofing of theorems is required. It also publishes shorter research communications (Letters) covering nascent research in some of the hottest areas of mathematical research. This journal will publish the highest quality papers in all of the traditional areas of applied and theoretical areas of mathematics and computer science, and it will actively seek to publish seminal papers in the most emerging and interdisciplinary areas in all of the mathematical sciences. Research in the Mathematical Sciences wishes to lead the way by promoting the highest quality research of this type.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信