结核病离散数学模型的全球动力学。

IF 1.8 4区 数学 Q3 ECOLOGY
Journal of Biological Dynamics Pub Date : 2024-12-01 Epub Date: 2024-03-17 DOI:10.1080/17513758.2024.2323724
Saber Elaydi, René Lozi
{"title":"结核病离散数学模型的全球动力学。","authors":"Saber Elaydi, René Lozi","doi":"10.1080/17513758.2024.2323724","DOIUrl":null,"url":null,"abstract":"<p><p>In this paper, we develop discrete models of Tuberculosis (TB). This includes SEI endogenous and exogenous models without treatment. These models are then extended to a SEIT model with treatment. We develop two types of net reproduction numbers, one is the traditional <math><msub><mrow><mi>R</mi></mrow><mn>0</mn></msub></math> which is based on the disease-free equilibrium, and a new net reproduction number <math><msub><mrow><mi>R</mi></mrow><mn>0</mn></msub><mo>(</mo><msup><mrow><mi>E</mi></mrow><mo>∗</mo></msup><mo>)</mo></math> based on the endemic equilibrium. It is shown that the disease-free equilibrium is globally asymptotically stable if <math><msub><mrow><mi>R</mi></mrow><mn>0</mn></msub><mo>≤</mo><mtext> </mtext><mn>1</mn></math> and unstable if <math><msub><mrow><mi>R</mi></mrow><mn>0</mn></msub><mo>></mo><mn>1</mn></math>. Moreover, the endemic equilibrium is locally asymptotically stable if <math><msub><mrow><mi>R</mi></mrow><mn>0</mn></msub><mo>(</mo><msup><mrow><mi>E</mi></mrow><mo>∗</mo></msup><mo>)</mo><mo><</mo><mn>1</mn><mo><</mo><msub><mrow><mi>R</mi></mrow><mn>0</mn></msub></math>.</p>","PeriodicalId":48809,"journal":{"name":"Journal of Biological Dynamics","volume":"18 1","pages":"2323724"},"PeriodicalIF":1.8000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Global dynamics of discrete mathematical models of tuberculosis.\",\"authors\":\"Saber Elaydi, René Lozi\",\"doi\":\"10.1080/17513758.2024.2323724\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In this paper, we develop discrete models of Tuberculosis (TB). This includes SEI endogenous and exogenous models without treatment. These models are then extended to a SEIT model with treatment. We develop two types of net reproduction numbers, one is the traditional <math><msub><mrow><mi>R</mi></mrow><mn>0</mn></msub></math> which is based on the disease-free equilibrium, and a new net reproduction number <math><msub><mrow><mi>R</mi></mrow><mn>0</mn></msub><mo>(</mo><msup><mrow><mi>E</mi></mrow><mo>∗</mo></msup><mo>)</mo></math> based on the endemic equilibrium. It is shown that the disease-free equilibrium is globally asymptotically stable if <math><msub><mrow><mi>R</mi></mrow><mn>0</mn></msub><mo>≤</mo><mtext> </mtext><mn>1</mn></math> and unstable if <math><msub><mrow><mi>R</mi></mrow><mn>0</mn></msub><mo>></mo><mn>1</mn></math>. Moreover, the endemic equilibrium is locally asymptotically stable if <math><msub><mrow><mi>R</mi></mrow><mn>0</mn></msub><mo>(</mo><msup><mrow><mi>E</mi></mrow><mo>∗</mo></msup><mo>)</mo><mo><</mo><mn>1</mn><mo><</mo><msub><mrow><mi>R</mi></mrow><mn>0</mn></msub></math>.</p>\",\"PeriodicalId\":48809,\"journal\":{\"name\":\"Journal of Biological Dynamics\",\"volume\":\"18 1\",\"pages\":\"2323724\"},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Biological Dynamics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1080/17513758.2024.2323724\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/3/17 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"ECOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biological Dynamics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1080/17513758.2024.2323724","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/3/17 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们建立了结核病(TB)的离散模型。其中包括无治疗的 SEI 内生模型和外生模型。然后将这些模型扩展到有治疗的 SEIT 模型。我们建立了两种净繁殖数,一种是基于无病平衡的传统 R0,另一种是基于地方病平衡的新净繁殖数 R0(E∗)。结果表明,如果 R0≤ 1,无病均衡是全局渐近稳定的,如果 R0>1 则不稳定。此外,如果 R0(E∗)1R0,则地方病均衡是局部渐近稳定的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Global dynamics of discrete mathematical models of tuberculosis.

In this paper, we develop discrete models of Tuberculosis (TB). This includes SEI endogenous and exogenous models without treatment. These models are then extended to a SEIT model with treatment. We develop two types of net reproduction numbers, one is the traditional R0 which is based on the disease-free equilibrium, and a new net reproduction number R0(E) based on the endemic equilibrium. It is shown that the disease-free equilibrium is globally asymptotically stable if R0 1 and unstable if R0>1. Moreover, the endemic equilibrium is locally asymptotically stable if R0(E)<1<R0.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Biological Dynamics
Journal of Biological Dynamics ECOLOGY-MATHEMATICAL & COMPUTATIONAL BIOLOGY
CiteScore
4.90
自引率
3.60%
发文量
28
审稿时长
33 weeks
期刊介绍: Journal of Biological Dynamics, an open access journal, publishes state of the art papers dealing with the analysis of dynamic models that arise from biological processes. The Journal focuses on dynamic phenomena at scales ranging from the level of individual organisms to that of populations, communities, and ecosystems in the fields of ecology and evolutionary biology, population dynamics, epidemiology, immunology, neuroscience, environmental science, and animal behavior. Papers in other areas are acceptable at the editors’ discretion. In addition to papers that analyze original mathematical models and develop new theories and analytic methods, the Journal welcomes papers that connect mathematical modeling and analysis to experimental and observational data. The Journal also publishes short notes, expository and review articles, book reviews and a section on open problems.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信