{"title":"纳米光子生物传感技术的阶段性进展。","authors":"Isabel Barth, Hakho Lee","doi":"10.1038/s41377-024-01415-3","DOIUrl":null,"url":null,"abstract":"<p><p>In the continuous pursuit of enhancing the sensitivity of nanophotonic biosensors by leveraging phase phenomena, a recent development involved the engineering of an atomically thin Ge<sub>2</sub>Sb<sub>2</sub>Te<sub>5</sub> layer on a silver nanofilm to generate large Goos-Hänchen-shifts associated with phase singularities. The resulting detection limit reached ~7 × 10<sup>-7</sup> RIU.</p>","PeriodicalId":18093,"journal":{"name":"Light, science & applications","volume":"13 1","pages":"76"},"PeriodicalIF":19.4000,"publicationDate":"2024-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10944832/pdf/","citationCount":"0","resultStr":"{\"title\":\"Phase-driven progress in nanophotonic biosensing.\",\"authors\":\"Isabel Barth, Hakho Lee\",\"doi\":\"10.1038/s41377-024-01415-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In the continuous pursuit of enhancing the sensitivity of nanophotonic biosensors by leveraging phase phenomena, a recent development involved the engineering of an atomically thin Ge<sub>2</sub>Sb<sub>2</sub>Te<sub>5</sub> layer on a silver nanofilm to generate large Goos-Hänchen-shifts associated with phase singularities. The resulting detection limit reached ~7 × 10<sup>-7</sup> RIU.</p>\",\"PeriodicalId\":18093,\"journal\":{\"name\":\"Light, science & applications\",\"volume\":\"13 1\",\"pages\":\"76\"},\"PeriodicalIF\":19.4000,\"publicationDate\":\"2024-03-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10944832/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Light, science & applications\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1038/s41377-024-01415-3\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Physics and Astronomy\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Light, science & applications","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1038/s41377-024-01415-3","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
In the continuous pursuit of enhancing the sensitivity of nanophotonic biosensors by leveraging phase phenomena, a recent development involved the engineering of an atomically thin Ge2Sb2Te5 layer on a silver nanofilm to generate large Goos-Hänchen-shifts associated with phase singularities. The resulting detection limit reached ~7 × 10-7 RIU.
期刊介绍:
Light: Science & Applications is an open-access, fully peer-reviewed publication.It publishes high-quality optics and photonics research globally, covering fundamental research and important issues in engineering and applied sciences related to optics and photonics.