Gabriella Orbach, Eva J Melendes, Kaitlyn Warren, Jianhua Qiu, William P Meehan, Rebekah Mannix, Fernanda Guilhaume-Correa
{"title":"轻度脑外伤临床前模型中的视觉损伤。","authors":"Gabriella Orbach, Eva J Melendes, Kaitlyn Warren, Jianhua Qiu, William P Meehan, Rebekah Mannix, Fernanda Guilhaume-Correa","doi":"10.1089/neu.2023.0574","DOIUrl":null,"url":null,"abstract":"<p><p>Impairment in visual function is common after traumatic brain injury (TBI) in the clinical setting, a phenomenon that translates to pre-clinical animal models as well. In Morris et al. (2021), we reported histological changes following weight-drop-induced TBI in a rodent model including retinal ganglion cell (RGC) loss, decreased electroretinogram (ERG) evoked potential, optic nerve diameter reduction, induced inflammation and gliosis, and loss of myelin accompanied by markedly impaired visual acuity. In this review, we will describe several pre-clinical TBI models that result in injuries to the visual system, indicating that visual function may be impaired following brain injury induced by a number of different injury modalities. This underscores the importance of understanding the role of the visual system and the potential detrimental sequelae to this sensory modality post-TBI. Given that most commonly employed behavioral tests such as the Elevated Plus Maze and Morris Water Maze rely on an intact visual system, interpretation of functional deficits in diffuse models may be confounded by off- target effects on the visual system.</p>","PeriodicalId":16512,"journal":{"name":"Journal of neurotrauma","volume":" ","pages":"1842-1852"},"PeriodicalIF":3.9000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11386989/pdf/","citationCount":"0","resultStr":"{\"title\":\"Visual Impairment in Pre-Clinical Models of Mild Traumatic Brain Injury.\",\"authors\":\"Gabriella Orbach, Eva J Melendes, Kaitlyn Warren, Jianhua Qiu, William P Meehan, Rebekah Mannix, Fernanda Guilhaume-Correa\",\"doi\":\"10.1089/neu.2023.0574\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Impairment in visual function is common after traumatic brain injury (TBI) in the clinical setting, a phenomenon that translates to pre-clinical animal models as well. In Morris et al. (2021), we reported histological changes following weight-drop-induced TBI in a rodent model including retinal ganglion cell (RGC) loss, decreased electroretinogram (ERG) evoked potential, optic nerve diameter reduction, induced inflammation and gliosis, and loss of myelin accompanied by markedly impaired visual acuity. In this review, we will describe several pre-clinical TBI models that result in injuries to the visual system, indicating that visual function may be impaired following brain injury induced by a number of different injury modalities. This underscores the importance of understanding the role of the visual system and the potential detrimental sequelae to this sensory modality post-TBI. Given that most commonly employed behavioral tests such as the Elevated Plus Maze and Morris Water Maze rely on an intact visual system, interpretation of functional deficits in diffuse models may be confounded by off- target effects on the visual system.</p>\",\"PeriodicalId\":16512,\"journal\":{\"name\":\"Journal of neurotrauma\",\"volume\":\" \",\"pages\":\"1842-1852\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2024-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11386989/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of neurotrauma\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1089/neu.2023.0574\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/5/2 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"CLINICAL NEUROLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of neurotrauma","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1089/neu.2023.0574","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/5/2 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
Visual Impairment in Pre-Clinical Models of Mild Traumatic Brain Injury.
Impairment in visual function is common after traumatic brain injury (TBI) in the clinical setting, a phenomenon that translates to pre-clinical animal models as well. In Morris et al. (2021), we reported histological changes following weight-drop-induced TBI in a rodent model including retinal ganglion cell (RGC) loss, decreased electroretinogram (ERG) evoked potential, optic nerve diameter reduction, induced inflammation and gliosis, and loss of myelin accompanied by markedly impaired visual acuity. In this review, we will describe several pre-clinical TBI models that result in injuries to the visual system, indicating that visual function may be impaired following brain injury induced by a number of different injury modalities. This underscores the importance of understanding the role of the visual system and the potential detrimental sequelae to this sensory modality post-TBI. Given that most commonly employed behavioral tests such as the Elevated Plus Maze and Morris Water Maze rely on an intact visual system, interpretation of functional deficits in diffuse models may be confounded by off- target effects on the visual system.
期刊介绍:
Journal of Neurotrauma is the flagship, peer-reviewed publication for reporting on the latest advances in both the clinical and laboratory investigation of traumatic brain and spinal cord injury. The Journal focuses on the basic pathobiology of injury to the central nervous system, while considering preclinical and clinical trials targeted at improving both the early management and long-term care and recovery of traumatically injured patients. This is the essential journal publishing cutting-edge basic and translational research in traumatically injured human and animal studies, with emphasis on neurodegenerative disease research linked to CNS trauma.