{"title":"研究葫芦素 D、I 和 E 在 HepG2 细胞系中通过 Bax/Bcl-xL、caspase-3/9 和氧化应激调节剂介导的凋亡效应。","authors":"Muhammed Mehdi Üremiş, Yusuf Türköz, Nuray Üremiş","doi":"10.1002/ddr.22174","DOIUrl":null,"url":null,"abstract":"<p>Cucurbitacins, natural compounds highly abundant in the <i>Cucurbitaceae</i> plant family, are characterized by their anticancer, anti-inflammatory, and hepatoprotective properties. These compounds have potential as therapeutic agents in the treatment of liver cancer. This study investigated the association of cucurbitacin D, I, and E (CuD, CuI, and CuE) with the caspase cascade, Bcl-2 family, and oxidative stress modulators in the HepG2 cell line. We evaluated the antiproliferative effects of CuD, CuI, and CuE using the MTT assay. We analyzed Annexin V/PI double staining, cell cycle, mitochondrial membrane potential, and wound healing assays at different doses of the three compounds. To examine the modulation of the caspase cascade, we determined the protein and gene expression levels of Bax, Bcl-xL, caspase-3, and caspase-9. We evaluated the total antioxidant status (TAS), total oxidant status (TOS), superoxide dismutase (SOD), glutathione (GSH), Total, and Native Thiol levels to measure cellular redox status. CuD, CuI, and CuE suppressed the proliferation of HepG2 cells in a dose-dependent manner. The cucurbitacins induced apoptosis by increasing caspase-3, caspase-9, and Bax activity, inhibiting Bcl-xL activation, causing loss of ΔΨm, and suppressing cell migration. Furthermore, cucurbitacins modulated oxidative stress by increasing TOS levels and decreasing SOD, GSH, TAS, and total and native Thiol levels. Our findings suggest that CuD, CuI, and CuE exert apoptotic effects on the hepatocellular carcinoma cell line by regulating Bax/Bcl-xL, caspase-3/9 signaling, and causing intracellular ROS increase in HepG2 cells.</p>","PeriodicalId":11291,"journal":{"name":"Drug Development Research","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2024-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ddr.22174","citationCount":"0","resultStr":"{\"title\":\"Investigation of apoptotic effects of Cucurbitacin D, I, and E mediated by Bax/Bcl-xL, caspase-3/9, and oxidative stress modulators in HepG2 cell line\",\"authors\":\"Muhammed Mehdi Üremiş, Yusuf Türköz, Nuray Üremiş\",\"doi\":\"10.1002/ddr.22174\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Cucurbitacins, natural compounds highly abundant in the <i>Cucurbitaceae</i> plant family, are characterized by their anticancer, anti-inflammatory, and hepatoprotective properties. These compounds have potential as therapeutic agents in the treatment of liver cancer. This study investigated the association of cucurbitacin D, I, and E (CuD, CuI, and CuE) with the caspase cascade, Bcl-2 family, and oxidative stress modulators in the HepG2 cell line. We evaluated the antiproliferative effects of CuD, CuI, and CuE using the MTT assay. We analyzed Annexin V/PI double staining, cell cycle, mitochondrial membrane potential, and wound healing assays at different doses of the three compounds. To examine the modulation of the caspase cascade, we determined the protein and gene expression levels of Bax, Bcl-xL, caspase-3, and caspase-9. We evaluated the total antioxidant status (TAS), total oxidant status (TOS), superoxide dismutase (SOD), glutathione (GSH), Total, and Native Thiol levels to measure cellular redox status. CuD, CuI, and CuE suppressed the proliferation of HepG2 cells in a dose-dependent manner. The cucurbitacins induced apoptosis by increasing caspase-3, caspase-9, and Bax activity, inhibiting Bcl-xL activation, causing loss of ΔΨm, and suppressing cell migration. Furthermore, cucurbitacins modulated oxidative stress by increasing TOS levels and decreasing SOD, GSH, TAS, and total and native Thiol levels. Our findings suggest that CuD, CuI, and CuE exert apoptotic effects on the hepatocellular carcinoma cell line by regulating Bax/Bcl-xL, caspase-3/9 signaling, and causing intracellular ROS increase in HepG2 cells.</p>\",\"PeriodicalId\":11291,\"journal\":{\"name\":\"Drug Development Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2024-03-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ddr.22174\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Drug Development Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/ddr.22174\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MEDICINAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Drug Development Research","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ddr.22174","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
Investigation of apoptotic effects of Cucurbitacin D, I, and E mediated by Bax/Bcl-xL, caspase-3/9, and oxidative stress modulators in HepG2 cell line
Cucurbitacins, natural compounds highly abundant in the Cucurbitaceae plant family, are characterized by their anticancer, anti-inflammatory, and hepatoprotective properties. These compounds have potential as therapeutic agents in the treatment of liver cancer. This study investigated the association of cucurbitacin D, I, and E (CuD, CuI, and CuE) with the caspase cascade, Bcl-2 family, and oxidative stress modulators in the HepG2 cell line. We evaluated the antiproliferative effects of CuD, CuI, and CuE using the MTT assay. We analyzed Annexin V/PI double staining, cell cycle, mitochondrial membrane potential, and wound healing assays at different doses of the three compounds. To examine the modulation of the caspase cascade, we determined the protein and gene expression levels of Bax, Bcl-xL, caspase-3, and caspase-9. We evaluated the total antioxidant status (TAS), total oxidant status (TOS), superoxide dismutase (SOD), glutathione (GSH), Total, and Native Thiol levels to measure cellular redox status. CuD, CuI, and CuE suppressed the proliferation of HepG2 cells in a dose-dependent manner. The cucurbitacins induced apoptosis by increasing caspase-3, caspase-9, and Bax activity, inhibiting Bcl-xL activation, causing loss of ΔΨm, and suppressing cell migration. Furthermore, cucurbitacins modulated oxidative stress by increasing TOS levels and decreasing SOD, GSH, TAS, and total and native Thiol levels. Our findings suggest that CuD, CuI, and CuE exert apoptotic effects on the hepatocellular carcinoma cell line by regulating Bax/Bcl-xL, caspase-3/9 signaling, and causing intracellular ROS increase in HepG2 cells.
期刊介绍:
Drug Development Research focuses on research topics related to the discovery and development of new therapeutic entities. The journal publishes original research articles on medicinal chemistry, pharmacology, biotechnology and biopharmaceuticals, toxicology, and drug delivery, formulation, and pharmacokinetics. The journal welcomes manuscripts on new compounds and technologies in all areas focused on human therapeutics, as well as global management, health care policy, and regulatory issues involving the drug discovery and development process. In addition to full-length articles, Drug Development Research publishes Brief Reports on important and timely new research findings, as well as in-depth review articles. The journal also features periodic special thematic issues devoted to specific compound classes, new technologies, and broad aspects of drug discovery and development.