Gevrey 类隐含映射定理在半线性椭圆 PDE 的 UQ 中的应用

Helmut Harbrecht, Marc Schmidlin, Christoph Schwab
{"title":"Gevrey 类隐含映射定理在半线性椭圆 PDE 的 UQ 中的应用","authors":"Helmut Harbrecht, Marc Schmidlin, Christoph Schwab","doi":"10.1142/s0218202524500179","DOIUrl":null,"url":null,"abstract":"<p>This paper is concerned with a regularity analysis of parametric operator equations with a perspective on uncertainty quantification. We study the regularity of mappings between Banach spaces near branches of isolated solutions that are implicitly defined by a residual equation. Under <span><math altimg=\"eq-00001.gif\" display=\"inline\" overflow=\"scroll\"><mi>s</mi></math></span><span></span>-Gevrey assumptions on the residual equation, we establish <span><math altimg=\"eq-00002.gif\" display=\"inline\" overflow=\"scroll\"><mi>s</mi></math></span><span></span>-Gevrey bounds on the Fréchet derivatives of the locally defined data-to-solution mapping. This abstract framework is illustrated in a proof of regularity bounds for a semilinear elliptic partial differential equation with parametric and random field input.</p>","PeriodicalId":18311,"journal":{"name":"Mathematical Models and Methods in Applied Sciences","volume":"41 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Gevrey class implicit mapping theorem with application to UQ of semilinear elliptic PDEs\",\"authors\":\"Helmut Harbrecht, Marc Schmidlin, Christoph Schwab\",\"doi\":\"10.1142/s0218202524500179\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This paper is concerned with a regularity analysis of parametric operator equations with a perspective on uncertainty quantification. We study the regularity of mappings between Banach spaces near branches of isolated solutions that are implicitly defined by a residual equation. Under <span><math altimg=\\\"eq-00001.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>s</mi></math></span><span></span>-Gevrey assumptions on the residual equation, we establish <span><math altimg=\\\"eq-00002.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>s</mi></math></span><span></span>-Gevrey bounds on the Fréchet derivatives of the locally defined data-to-solution mapping. This abstract framework is illustrated in a proof of regularity bounds for a semilinear elliptic partial differential equation with parametric and random field input.</p>\",\"PeriodicalId\":18311,\"journal\":{\"name\":\"Mathematical Models and Methods in Applied Sciences\",\"volume\":\"41 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Models and Methods in Applied Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/s0218202524500179\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Models and Methods in Applied Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0218202524500179","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文以不确定性量化为视角,关注参数算子方程的正则性分析。我们研究由残差方程隐含定义的孤立解分支附近巴拿赫空间之间映射的正则性。在残差方程的 s-Gevrey 假设下,我们建立了局部定义的数据到溶液映射的弗雷谢特导数的 s-Gevrey 边界。这个抽象框架在一个具有参数和随机场输入的半线性椭圆偏微分方程的正则性边界证明中得到了说明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The Gevrey class implicit mapping theorem with application to UQ of semilinear elliptic PDEs

This paper is concerned with a regularity analysis of parametric operator equations with a perspective on uncertainty quantification. We study the regularity of mappings between Banach spaces near branches of isolated solutions that are implicitly defined by a residual equation. Under s-Gevrey assumptions on the residual equation, we establish s-Gevrey bounds on the Fréchet derivatives of the locally defined data-to-solution mapping. This abstract framework is illustrated in a proof of regularity bounds for a semilinear elliptic partial differential equation with parametric and random field input.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信