动力学交通流的矩方法和一类宏观交通模型

Raul Borsche, Axel Klar
{"title":"动力学交通流的矩方法和一类宏观交通模型","authors":"Raul Borsche, Axel Klar","doi":"10.1142/s0218202524400074","DOIUrl":null,"url":null,"abstract":"<p>Starting from a nonlocal version of a classical kinetic traffic model, we derive a class of second-order macroscopic traffic flow models using appropriate moment closure approaches. Under mild assumptions on the closure, we prove that the resulting macroscopic equations fulfill a set of conditions including hyperbolicity, physically reasonable invariant domains and physically reasonable bounds on the speed with which the waves propagate. Finally, numerical results for various situations are presented, illustrating the analytical findings and comparing kinetic and macroscopic solutions.</p>","PeriodicalId":18311,"journal":{"name":"Mathematical Models and Methods in Applied Sciences","volume":"159 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Moment methods for kinetic traffic flow and a class of macroscopic traffic models\",\"authors\":\"Raul Borsche, Axel Klar\",\"doi\":\"10.1142/s0218202524400074\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Starting from a nonlocal version of a classical kinetic traffic model, we derive a class of second-order macroscopic traffic flow models using appropriate moment closure approaches. Under mild assumptions on the closure, we prove that the resulting macroscopic equations fulfill a set of conditions including hyperbolicity, physically reasonable invariant domains and physically reasonable bounds on the speed with which the waves propagate. Finally, numerical results for various situations are presented, illustrating the analytical findings and comparing kinetic and macroscopic solutions.</p>\",\"PeriodicalId\":18311,\"journal\":{\"name\":\"Mathematical Models and Methods in Applied Sciences\",\"volume\":\"159 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-03-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Models and Methods in Applied Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/s0218202524400074\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Models and Methods in Applied Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0218202524400074","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

从经典动力学交通模型的非局部版本出发,我们利用适当的矩闭合方法推导出一类二阶宏观交通流模型。在对闭合的温和假设下,我们证明了所得到的宏观方程满足一系列条件,包括双曲性、物理上合理的不变域以及波传播速度的物理上合理约束。最后,我们给出了各种情况下的数值结果,说明了分析结果,并比较了动力学解和宏观解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Moment methods for kinetic traffic flow and a class of macroscopic traffic models

Starting from a nonlocal version of a classical kinetic traffic model, we derive a class of second-order macroscopic traffic flow models using appropriate moment closure approaches. Under mild assumptions on the closure, we prove that the resulting macroscopic equations fulfill a set of conditions including hyperbolicity, physically reasonable invariant domains and physically reasonable bounds on the speed with which the waves propagate. Finally, numerical results for various situations are presented, illustrating the analytical findings and comparing kinetic and macroscopic solutions.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信