通过 DFT 声子计算重新评估 Sn-Zr 系统的热力学性能

IF 1.9 3区 材料科学 Q4 CHEMISTRY, PHYSICAL
Jiaqing Peng , Jianyun Shen , Xuankai Feng , Zhuqing Cheng
{"title":"通过 DFT 声子计算重新评估 Sn-Zr 系统的热力学性能","authors":"Jiaqing Peng ,&nbsp;Jianyun Shen ,&nbsp;Xuankai Feng ,&nbsp;Zhuqing Cheng","doi":"10.1016/j.calphad.2024.102672","DOIUrl":null,"url":null,"abstract":"<div><p>The Sn–Zr system was re-assessed thermodynamically. Gibbs free energies of the intermetallic compounds of this system were calculated by DFT phonon calculations which can give more reliable information owing to considering the contributions of lattice vibration and electric thermal excitation. Newly published valuable experimental data of liquidus, solidus and invariant reactions of this system were used for the first time in the optimization of the model parameters. It is shown that the previous thermodynamic models, where the Gibbs free energies of formation at different temperatures were replaced by energies of formation at 0 K, overestimated obviously the stability of all the compounds of this system. The thermodynamic model for the Sn–Zr system established in this work would give more solid prediction of phase structures and thermodynamic properties for materials containing Sn–Zr system.</p></div>","PeriodicalId":9436,"journal":{"name":"Calphad-computer Coupling of Phase Diagrams and Thermochemistry","volume":"85 ","pages":"Article 102672"},"PeriodicalIF":1.9000,"publicationDate":"2024-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Thermodynamic reassessment of Sn–Zr system assisted by DFT phonon calculations\",\"authors\":\"Jiaqing Peng ,&nbsp;Jianyun Shen ,&nbsp;Xuankai Feng ,&nbsp;Zhuqing Cheng\",\"doi\":\"10.1016/j.calphad.2024.102672\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The Sn–Zr system was re-assessed thermodynamically. Gibbs free energies of the intermetallic compounds of this system were calculated by DFT phonon calculations which can give more reliable information owing to considering the contributions of lattice vibration and electric thermal excitation. Newly published valuable experimental data of liquidus, solidus and invariant reactions of this system were used for the first time in the optimization of the model parameters. It is shown that the previous thermodynamic models, where the Gibbs free energies of formation at different temperatures were replaced by energies of formation at 0 K, overestimated obviously the stability of all the compounds of this system. The thermodynamic model for the Sn–Zr system established in this work would give more solid prediction of phase structures and thermodynamic properties for materials containing Sn–Zr system.</p></div>\",\"PeriodicalId\":9436,\"journal\":{\"name\":\"Calphad-computer Coupling of Phase Diagrams and Thermochemistry\",\"volume\":\"85 \",\"pages\":\"Article 102672\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-03-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Calphad-computer Coupling of Phase Diagrams and Thermochemistry\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0364591624000142\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Calphad-computer Coupling of Phase Diagrams and Thermochemistry","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0364591624000142","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

对 Sn-Zr 体系进行了热力学重新评估。该系统金属间化合物的吉布斯自由能是通过 DFT 声子计算得出的,由于考虑了晶格振动和电热激发的贡献,该计算能提供更可靠的信息。在优化模型参数时,首次使用了新公布的该体系液相、固相和不变反应的宝贵实验数据。结果表明,以前的热力学模型用 0 K 时的形成能代替了不同温度下的吉布斯自由能,明显高估了该体系所有化合物的稳定性。本研究建立的 Sn-Zr 体系热力学模型可以更准确地预测含有 Sn-Zr 体系的材料的相结构和热力学性质。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Thermodynamic reassessment of Sn–Zr system assisted by DFT phonon calculations

The Sn–Zr system was re-assessed thermodynamically. Gibbs free energies of the intermetallic compounds of this system were calculated by DFT phonon calculations which can give more reliable information owing to considering the contributions of lattice vibration and electric thermal excitation. Newly published valuable experimental data of liquidus, solidus and invariant reactions of this system were used for the first time in the optimization of the model parameters. It is shown that the previous thermodynamic models, where the Gibbs free energies of formation at different temperatures were replaced by energies of formation at 0 K, overestimated obviously the stability of all the compounds of this system. The thermodynamic model for the Sn–Zr system established in this work would give more solid prediction of phase structures and thermodynamic properties for materials containing Sn–Zr system.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.00
自引率
16.70%
发文量
94
审稿时长
2.5 months
期刊介绍: The design of industrial processes requires reliable thermodynamic data. CALPHAD (Computer Coupling of Phase Diagrams and Thermochemistry) aims to promote computational thermodynamics through development of models to represent thermodynamic properties for various phases which permit prediction of properties of multicomponent systems from those of binary and ternary subsystems, critical assessment of data and their incorporation into self-consistent databases, development of software to optimize and derive thermodynamic parameters and the development and use of databanks for calculations to improve understanding of various industrial and technological processes. This work is disseminated through the CALPHAD journal and its annual conference.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信