Micah Rickles-Young , Gabriel Tinoco , Junko Tsuji , Sam Pollock , Marcy Haynam , Heather Lefebvre , Kristyn Glover , Dwight H. Owen , Katharine A. Collier , Gavin Ha , Viktor A. Adalsteinsson , Carrie Cibulskis , Niall J. Lennon , Daniel G. Stover
{"title":"无细胞 DNA 浅层全基因组测序测定验证,用于确定晚期癌症中的肿瘤比例","authors":"Micah Rickles-Young , Gabriel Tinoco , Junko Tsuji , Sam Pollock , Marcy Haynam , Heather Lefebvre , Kristyn Glover , Dwight H. Owen , Katharine A. Collier , Gavin Ha , Viktor A. Adalsteinsson , Carrie Cibulskis , Niall J. Lennon , Daniel G. Stover","doi":"10.1016/j.jmoldx.2024.01.014","DOIUrl":null,"url":null,"abstract":"<div><p>Blood-based liquid biopsy is increasingly used in clinical care of patients with cancer, and fraction of tumor-derived DNA in circulation (tumor fraction; TFx) has demonstrated clinical validity across multiple cancer types. To determine TFx, shallow whole-genome sequencing of cell-free DNA (cfDNA) can be performed from a single blood sample, using an established computational pipeline (ichorCNA), without prior knowledge of tumor mutations, in a highly cost-effective manner. We describe assay validation of this approach to facilitate broad clinical application, including evaluation of assay sensitivity, precision, repeatability, reproducibility, pre-analytic factors, and DNA quality/quantity. Sensitivity to detect TFx of 3% (lower limit of detection) was 97.2% to 100% at 1× and 0.1× mean sequencing depth, respectively. Precision was demonstrated on distinct sequencing instruments (HiSeqX and NovaSeq) with no observable differences. The assay achieved prespecified 95% agreement of TFx across replicates of the same specimen (repeatability) and duplicate samples in different batches (reproducibility). Comparison of samples collected in EDTA and Streck tubes from single venipuncture in 23 patients demonstrated that EDTA or Streck tubes were comparable if processed within 8 hours. On the basis of a range of DNA inputs (1 to 50 ng), 20 ng cfDNA is the preferred input, with 5 ng minimum acceptable. Overall, this shallow whole-genome sequencing of cfDNA and ichorCNA approach offers sensitive, precise, and reproducible quantitation of TFx, facilitating assay application in clinical cancer care.</p></div>","PeriodicalId":50128,"journal":{"name":"Journal of Molecular Diagnostics","volume":"26 5","pages":"Pages 413-422"},"PeriodicalIF":3.4000,"publicationDate":"2024-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1525157824000527/pdfft?md5=c9933d34a83a021ca1c718cd91c5c493&pid=1-s2.0-S1525157824000527-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Assay Validation of Cell-Free DNA Shallow Whole-Genome Sequencing to Determine Tumor Fraction in Advanced Cancers\",\"authors\":\"Micah Rickles-Young , Gabriel Tinoco , Junko Tsuji , Sam Pollock , Marcy Haynam , Heather Lefebvre , Kristyn Glover , Dwight H. Owen , Katharine A. Collier , Gavin Ha , Viktor A. Adalsteinsson , Carrie Cibulskis , Niall J. Lennon , Daniel G. Stover\",\"doi\":\"10.1016/j.jmoldx.2024.01.014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Blood-based liquid biopsy is increasingly used in clinical care of patients with cancer, and fraction of tumor-derived DNA in circulation (tumor fraction; TFx) has demonstrated clinical validity across multiple cancer types. To determine TFx, shallow whole-genome sequencing of cell-free DNA (cfDNA) can be performed from a single blood sample, using an established computational pipeline (ichorCNA), without prior knowledge of tumor mutations, in a highly cost-effective manner. We describe assay validation of this approach to facilitate broad clinical application, including evaluation of assay sensitivity, precision, repeatability, reproducibility, pre-analytic factors, and DNA quality/quantity. Sensitivity to detect TFx of 3% (lower limit of detection) was 97.2% to 100% at 1× and 0.1× mean sequencing depth, respectively. Precision was demonstrated on distinct sequencing instruments (HiSeqX and NovaSeq) with no observable differences. The assay achieved prespecified 95% agreement of TFx across replicates of the same specimen (repeatability) and duplicate samples in different batches (reproducibility). Comparison of samples collected in EDTA and Streck tubes from single venipuncture in 23 patients demonstrated that EDTA or Streck tubes were comparable if processed within 8 hours. On the basis of a range of DNA inputs (1 to 50 ng), 20 ng cfDNA is the preferred input, with 5 ng minimum acceptable. Overall, this shallow whole-genome sequencing of cfDNA and ichorCNA approach offers sensitive, precise, and reproducible quantitation of TFx, facilitating assay application in clinical cancer care.</p></div>\",\"PeriodicalId\":50128,\"journal\":{\"name\":\"Journal of Molecular Diagnostics\",\"volume\":\"26 5\",\"pages\":\"Pages 413-422\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-03-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1525157824000527/pdfft?md5=c9933d34a83a021ca1c718cd91c5c493&pid=1-s2.0-S1525157824000527-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Molecular Diagnostics\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1525157824000527\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PATHOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular Diagnostics","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1525157824000527","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PATHOLOGY","Score":null,"Total":0}
Assay Validation of Cell-Free DNA Shallow Whole-Genome Sequencing to Determine Tumor Fraction in Advanced Cancers
Blood-based liquid biopsy is increasingly used in clinical care of patients with cancer, and fraction of tumor-derived DNA in circulation (tumor fraction; TFx) has demonstrated clinical validity across multiple cancer types. To determine TFx, shallow whole-genome sequencing of cell-free DNA (cfDNA) can be performed from a single blood sample, using an established computational pipeline (ichorCNA), without prior knowledge of tumor mutations, in a highly cost-effective manner. We describe assay validation of this approach to facilitate broad clinical application, including evaluation of assay sensitivity, precision, repeatability, reproducibility, pre-analytic factors, and DNA quality/quantity. Sensitivity to detect TFx of 3% (lower limit of detection) was 97.2% to 100% at 1× and 0.1× mean sequencing depth, respectively. Precision was demonstrated on distinct sequencing instruments (HiSeqX and NovaSeq) with no observable differences. The assay achieved prespecified 95% agreement of TFx across replicates of the same specimen (repeatability) and duplicate samples in different batches (reproducibility). Comparison of samples collected in EDTA and Streck tubes from single venipuncture in 23 patients demonstrated that EDTA or Streck tubes were comparable if processed within 8 hours. On the basis of a range of DNA inputs (1 to 50 ng), 20 ng cfDNA is the preferred input, with 5 ng minimum acceptable. Overall, this shallow whole-genome sequencing of cfDNA and ichorCNA approach offers sensitive, precise, and reproducible quantitation of TFx, facilitating assay application in clinical cancer care.
期刊介绍:
The Journal of Molecular Diagnostics, the official publication of the Association for Molecular Pathology (AMP), co-owned by the American Society for Investigative Pathology (ASIP), seeks to publish high quality original papers on scientific advances in the translation and validation of molecular discoveries in medicine into the clinical diagnostic setting, and the description and application of technological advances in the field of molecular diagnostic medicine. The editors welcome for review articles that contain: novel discoveries or clinicopathologic correlations including studies in oncology, infectious diseases, inherited diseases, predisposition to disease, clinical informatics, or the description of polymorphisms linked to disease states or normal variations; the application of diagnostic methodologies in clinical trials; or the development of new or improved molecular methods which may be applied to diagnosis or monitoring of disease or disease predisposition.