修正贝塞尔函数行列式的渐近性和第二个潘列夫方程

Pub Date : 2024-01-31 DOI:10.1142/s2010326324500035
Yu Chen, Shuai-Xia Xu, Yu-Qiu Zhao
{"title":"修正贝塞尔函数行列式的渐近性和第二个潘列夫方程","authors":"Yu Chen, Shuai-Xia Xu, Yu-Qiu Zhao","doi":"10.1142/s2010326324500035","DOIUrl":null,"url":null,"abstract":"<p>In the paper, we consider the extended Gross–Witten–Wadia unitary matrix model by introducing a logarithmic term in the potential. The partition function of the model can be expressed equivalently in terms of the Toeplitz determinant with the <span><math altimg=\"eq-00001.gif\" display=\"inline\" overflow=\"scroll\"><mo stretchy=\"false\">(</mo><mi>i</mi><mo>,</mo><mi>j</mi><mo stretchy=\"false\">)</mo></math></span><span></span>-entry being the modified Bessel functions of order <span><math altimg=\"eq-00002.gif\" display=\"inline\" overflow=\"scroll\"><mi>i</mi><mo stretchy=\"false\">−</mo><mi>j</mi><mo stretchy=\"false\">−</mo><mi>ν</mi></math></span><span></span>, <span><math altimg=\"eq-00003.gif\" display=\"inline\" overflow=\"scroll\"><mi>ν</mi><mo>∈</mo><mi>ℂ</mi></math></span><span></span>. When the degree <span><math altimg=\"eq-00004.gif\" display=\"inline\" overflow=\"scroll\"><mi>n</mi></math></span><span></span> is finite, we show that the Toeplitz determinant is described by the isomonodromy <span><math altimg=\"eq-00005.gif\" display=\"inline\" overflow=\"scroll\"><mi>τ</mi></math></span><span></span>-function of the Painlevé III equation. As a double scaling limit, we establish an asymptotic approximation of the logarithmic derivative of the Toeplitz determinant, expressed in terms of the Hastings–McLeod solution of the inhomogeneous Painlevé II equation with parameter <span><math altimg=\"eq-00006.gif\" display=\"inline\" overflow=\"scroll\"><mi>ν</mi><mo stretchy=\"false\">+</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac></math></span><span></span>. The asymptotics of the leading coefficient and recurrence coefficient of the associated orthogonal polynomials are also derived. We obtain the results by applying the Deift–Zhou nonlinear steepest descent method to the Riemann–Hilbert problem for orthogonal polynomials on the Hankel loop. The main concern here is the construction of a local parametrix at the critical point <span><math altimg=\"eq-00007.gif\" display=\"inline\" overflow=\"scroll\"><mi>z</mi><mo>=</mo><mo stretchy=\"false\">−</mo><mn>1</mn></math></span><span></span>, where the <span><math altimg=\"eq-00008.gif\" display=\"inline\" overflow=\"scroll\"><mi>ψ</mi></math></span><span></span>-function of the Jimbo–Miwa Lax pair for the inhomogeneous Painlevé II equation is involved.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Asymptotics of the determinant of the modified Bessel functions and the second Painlevé equation\",\"authors\":\"Yu Chen, Shuai-Xia Xu, Yu-Qiu Zhao\",\"doi\":\"10.1142/s2010326324500035\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In the paper, we consider the extended Gross–Witten–Wadia unitary matrix model by introducing a logarithmic term in the potential. The partition function of the model can be expressed equivalently in terms of the Toeplitz determinant with the <span><math altimg=\\\"eq-00001.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mo stretchy=\\\"false\\\">(</mo><mi>i</mi><mo>,</mo><mi>j</mi><mo stretchy=\\\"false\\\">)</mo></math></span><span></span>-entry being the modified Bessel functions of order <span><math altimg=\\\"eq-00002.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>i</mi><mo stretchy=\\\"false\\\">−</mo><mi>j</mi><mo stretchy=\\\"false\\\">−</mo><mi>ν</mi></math></span><span></span>, <span><math altimg=\\\"eq-00003.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>ν</mi><mo>∈</mo><mi>ℂ</mi></math></span><span></span>. When the degree <span><math altimg=\\\"eq-00004.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>n</mi></math></span><span></span> is finite, we show that the Toeplitz determinant is described by the isomonodromy <span><math altimg=\\\"eq-00005.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>τ</mi></math></span><span></span>-function of the Painlevé III equation. As a double scaling limit, we establish an asymptotic approximation of the logarithmic derivative of the Toeplitz determinant, expressed in terms of the Hastings–McLeod solution of the inhomogeneous Painlevé II equation with parameter <span><math altimg=\\\"eq-00006.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>ν</mi><mo stretchy=\\\"false\\\">+</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mn>2</mn></mrow></mfrac></math></span><span></span>. The asymptotics of the leading coefficient and recurrence coefficient of the associated orthogonal polynomials are also derived. We obtain the results by applying the Deift–Zhou nonlinear steepest descent method to the Riemann–Hilbert problem for orthogonal polynomials on the Hankel loop. The main concern here is the construction of a local parametrix at the critical point <span><math altimg=\\\"eq-00007.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>z</mi><mo>=</mo><mo stretchy=\\\"false\\\">−</mo><mn>1</mn></math></span><span></span>, where the <span><math altimg=\\\"eq-00008.gif\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"><mi>ψ</mi></math></span><span></span>-function of the Jimbo–Miwa Lax pair for the inhomogeneous Painlevé II equation is involved.</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-01-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1142/s2010326324500035\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s2010326324500035","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们通过在势中引入对数项来考虑扩展的格罗斯-威滕-瓦迪亚单元矩阵模型。该模型的分区函数可以等价地用托普利兹行列式来表示,其中 (i,j) 项是阶数为 i-j-ν, ν∈ℂ 的修正贝塞尔函数。当度 n 有限时,我们证明托普利兹行列式是由潘列韦三世方程的等单调性 τ 函数描述的。作为双重缩放极限,我们建立了托普利兹行列式对数导数的渐近近似,用参数为 ν+12 的非均质佩恩列韦 II 方程的黑斯廷斯-麦克里奥德解来表示。我们还推导出了相关正交多项式的领先系数和递推系数的渐近线。我们将 Deift-Zhou 非线性最陡下降法应用于汉克尔环上正交多项式的黎曼-希尔伯特问题,从而得到了这些结果。这里主要关注的是临界点 z=-1 的局部参数矩阵的构建,其中涉及不均匀 Painlevé II 方程的 Jimbo-Miwa Lax 对的ψ函数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Asymptotics of the determinant of the modified Bessel functions and the second Painlevé equation

In the paper, we consider the extended Gross–Witten–Wadia unitary matrix model by introducing a logarithmic term in the potential. The partition function of the model can be expressed equivalently in terms of the Toeplitz determinant with the (i,j)-entry being the modified Bessel functions of order ijν, ν. When the degree n is finite, we show that the Toeplitz determinant is described by the isomonodromy τ-function of the Painlevé III equation. As a double scaling limit, we establish an asymptotic approximation of the logarithmic derivative of the Toeplitz determinant, expressed in terms of the Hastings–McLeod solution of the inhomogeneous Painlevé II equation with parameter ν+12. The asymptotics of the leading coefficient and recurrence coefficient of the associated orthogonal polynomials are also derived. We obtain the results by applying the Deift–Zhou nonlinear steepest descent method to the Riemann–Hilbert problem for orthogonal polynomials on the Hankel loop. The main concern here is the construction of a local parametrix at the critical point z=1, where the ψ-function of the Jimbo–Miwa Lax pair for the inhomogeneous Painlevé II equation is involved.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信