样本均值-方差组合权重的分布

Pub Date : 2024-01-31 DOI:10.1142/s2010326324500023
Raymond Kan, Nathan Lassance, Xiaolu Wang
{"title":"样本均值-方差组合权重的分布","authors":"Raymond Kan, Nathan Lassance, Xiaolu Wang","doi":"10.1142/s2010326324500023","DOIUrl":null,"url":null,"abstract":"<p>We present a simple stochastic representation for the joint distribution of sample estimates of three scalar parameters and two vectors of portfolio weights that characterize the minimum-variance frontier. This stochastic representation is useful for sampling observations efficiently, deriving moments in closed-form, and studying the distribution and performance of many portfolio strategies that are functions of these five variables. We also present the asymptotic joint distributions of these five variables for both the standard regime and the high-dimensional regime. Both asymptotic distributions are simpler than the finite-sample one, and the one for the high-dimensional regime, i.e. when the number of assets and the sample size go together to infinity at a constant rate, reveals the high-dimensional properties of the considered estimators. Our results extend upon T. Bodnar, H. Dette, N. Parolya and E. Thorstén [Sampling distributions of optimal portfolio weights and characteristics in low and large dimensions, <i>Random Matrices: Theory Appl.</i> <b>11</b> (2022) 2250008].</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The distribution of sample mean-variance portfolio weights\",\"authors\":\"Raymond Kan, Nathan Lassance, Xiaolu Wang\",\"doi\":\"10.1142/s2010326324500023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We present a simple stochastic representation for the joint distribution of sample estimates of three scalar parameters and two vectors of portfolio weights that characterize the minimum-variance frontier. This stochastic representation is useful for sampling observations efficiently, deriving moments in closed-form, and studying the distribution and performance of many portfolio strategies that are functions of these five variables. We also present the asymptotic joint distributions of these five variables for both the standard regime and the high-dimensional regime. Both asymptotic distributions are simpler than the finite-sample one, and the one for the high-dimensional regime, i.e. when the number of assets and the sample size go together to infinity at a constant rate, reveals the high-dimensional properties of the considered estimators. Our results extend upon T. Bodnar, H. Dette, N. Parolya and E. Thorstén [Sampling distributions of optimal portfolio weights and characteristics in low and large dimensions, <i>Random Matrices: Theory Appl.</i> <b>11</b> (2022) 2250008].</p>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-01-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1142/s2010326324500023\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s2010326324500023","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们提出了一种简单的随机表示法,用于描述最小方差边界的三个标量参数和两个投资组合权重向量的样本估计值的联合分布。这种随机表示法有助于高效地对观测数据进行采样,以闭合形式推导矩,以及研究作为这五个变量函数的许多投资组合策略的分布和表现。我们还提出了这五个变量在标准机制和高维机制下的渐近联合分布。这两种渐近分布都比有限样本分布简单,而高维制度下的渐近分布,即资产数量和样本量以恒定速度同时达到无穷大时的渐近分布,揭示了所考虑的估计器的高维特性。我们的研究结果是在 T. Bodnar、H. Dette、N. Parolya 和 E. Thorstén [《低维度和大维度中最优投资组合权重和特征的采样分布》,Random Matrices:11 (2022) 2250008]。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
The distribution of sample mean-variance portfolio weights

We present a simple stochastic representation for the joint distribution of sample estimates of three scalar parameters and two vectors of portfolio weights that characterize the minimum-variance frontier. This stochastic representation is useful for sampling observations efficiently, deriving moments in closed-form, and studying the distribution and performance of many portfolio strategies that are functions of these five variables. We also present the asymptotic joint distributions of these five variables for both the standard regime and the high-dimensional regime. Both asymptotic distributions are simpler than the finite-sample one, and the one for the high-dimensional regime, i.e. when the number of assets and the sample size go together to infinity at a constant rate, reveals the high-dimensional properties of the considered estimators. Our results extend upon T. Bodnar, H. Dette, N. Parolya and E. Thorstén [Sampling distributions of optimal portfolio weights and characteristics in low and large dimensions, Random Matrices: Theory Appl. 11 (2022) 2250008].

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信