{"title":"强化学习和元决策","authors":"Pieter Verbeke , Tom Verguts","doi":"10.1016/j.cobeha.2024.101374","DOIUrl":null,"url":null,"abstract":"<div><p>A key aspect of cognitive flexibility is to efficiently make use of earlier experience to attain one’s goals. This requires learning, but also a modular, and more specifically hierarchical, structure. We hold that both are required, but combining them leads to several computational challenges that brains and artificial agents (learn to) deal with. In a hierarchical structure, meta-decisions must be made, of which two types can be distinguished. First, a (meta-)decision may involve choosing which (lower-level) modules to select (module choice). Second, it may consist of choosing appropriate parameter settings within a module (parameter tuning). Furthermore, prediction error monitoring may allow determining the right meta-decision (module choice or parameter tuning). We discuss computational challenges and empirical evidence relative to how these two meta-decisions may be implemented to support learning for cognitive flexibility.</p></div>","PeriodicalId":56191,"journal":{"name":"Current Opinion in Behavioral Sciences","volume":"57 ","pages":"Article 101374"},"PeriodicalIF":4.9000,"publicationDate":"2024-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Reinforcement learning and meta-decision-making\",\"authors\":\"Pieter Verbeke , Tom Verguts\",\"doi\":\"10.1016/j.cobeha.2024.101374\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>A key aspect of cognitive flexibility is to efficiently make use of earlier experience to attain one’s goals. This requires learning, but also a modular, and more specifically hierarchical, structure. We hold that both are required, but combining them leads to several computational challenges that brains and artificial agents (learn to) deal with. In a hierarchical structure, meta-decisions must be made, of which two types can be distinguished. First, a (meta-)decision may involve choosing which (lower-level) modules to select (module choice). Second, it may consist of choosing appropriate parameter settings within a module (parameter tuning). Furthermore, prediction error monitoring may allow determining the right meta-decision (module choice or parameter tuning). We discuss computational challenges and empirical evidence relative to how these two meta-decisions may be implemented to support learning for cognitive flexibility.</p></div>\",\"PeriodicalId\":56191,\"journal\":{\"name\":\"Current Opinion in Behavioral Sciences\",\"volume\":\"57 \",\"pages\":\"Article 101374\"},\"PeriodicalIF\":4.9000,\"publicationDate\":\"2024-03-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Current Opinion in Behavioral Sciences\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2352154624000251\",\"RegionNum\":2,\"RegionCategory\":\"心理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BEHAVIORAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Behavioral Sciences","FirstCategoryId":"102","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352154624000251","RegionNum":2,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BEHAVIORAL SCIENCES","Score":null,"Total":0}
A key aspect of cognitive flexibility is to efficiently make use of earlier experience to attain one’s goals. This requires learning, but also a modular, and more specifically hierarchical, structure. We hold that both are required, but combining them leads to several computational challenges that brains and artificial agents (learn to) deal with. In a hierarchical structure, meta-decisions must be made, of which two types can be distinguished. First, a (meta-)decision may involve choosing which (lower-level) modules to select (module choice). Second, it may consist of choosing appropriate parameter settings within a module (parameter tuning). Furthermore, prediction error monitoring may allow determining the right meta-decision (module choice or parameter tuning). We discuss computational challenges and empirical evidence relative to how these two meta-decisions may be implemented to support learning for cognitive flexibility.
期刊介绍:
Current Opinion in Behavioral Sciences is a systematic, integrative review journal that provides a unique and educational platform for updates on the expanding volume of information published in the field of behavioral sciences.